
Naı̈ve Differences of Executable Code

Colin Percival
Computing Lab, Oxford University

colin.percival@comlab.ox.ac.uk

Abstract

The increasing frequency with which serious security
flaws are discovered and the increasing rapidity with
which they are exploited have made it necessary for pro-
grams to be updated far more frequently than in the past.
While binary updates are generally far more convenient
than source code updates, the distribution of pointers
throughout executable files makes it much harder to pro-
duce compact patches.

In contrast to earlier work which relies upon knowledge
of the internal structure of a particular platform’s exe-
cutable files, we describe a naı̈ve method which pro-
duces competitively small patches for any executable
files.

1 Introduction

Historically, binary patches have been constructed using
two basic operations, copying and insertion. Using ei-
ther substring matching or hashing techniques [Ma00],
portions of the new file are matched with portions of
the old file; those regions are copied, while the remain-
ing “new” bytes are stored in the patch file and in-
serted. Patches generated in this manner can therefore be
considered as programs consisting of two instructions,
COPY and INSERT.

Unfortunately, any source code modification will usually
cause changes throughout an executable file. Adding or
removing a small number of bytes of code or data will
change the relative position of blocks of code, adjust-
ing the displacement of relative branches which jump
over the modified region; similarly, any data located af-
ter the modified region will have a different address,
causing data pointers to be modified throughout the file.
This causes patches generated with the traditional copy-
and-insert method to be much larger than necessary; a
one-line source code patch in a 500kB executable could

translate into a 50kB patch file.

One solution to this problem relies upon knowledge of
the internal structure of an executable file. If a pointer to
address A in the old executable file changes to point at
address B in the new executable file, it is very likely that
other pointers to address A will also change in the same
manner. As a result, by effectively disassembling the
entire file and recording the first instance of each such
substitution, one can predict future substitutions, thereby
obviating the need to record them [BMM99]. However,
the necessary disassembly means that any tools using
this approach will be entirely platform-dependent.

2 BSDiff

In order to solve the ‘pointer problem’ in a portable
manner, we make two important observations: First, in
the regions of an executable file not directly affected by
a modification, the differences will generally be quite
sparse. Not only will the modified addresses consti-
tute only a small portion of the compiled code, but ad-
dresses are most likely to only change in their least sig-
nificant one or two bytes. Second, data and code tends
to be moved around in blocks; consequently, locality
of reference will lead to a large number of different
(nearby) addresses being adjusted by the same amount.
These two observations lead to the important fact that
if the regions in two versions of an executable program
which correspond to the same lines of source code are
matched against each other, the bytewise differences will
be mostly zero, and even when non-zero will take certain
values far more often than others — in short, the string
of bytewise differences will be highly compressible.

We now construct binary patches as follows. First,
we read the old file and perform some sort of index-
ing, either based on hashing [Tr99] or suffix sorting
(e.g., [LS99]). Next, using this index, we pass through
the new file and find a set of regions which match exactly
against regions of the old file. For reasons which will



become evident later, we only record regions which con-
tain at least 8 bytes not matching the forward-extension
of the previous match (i.e., if the previous match is
new[x . . . x+k] = old[y . . . y +k], we look for a match
new[x′ . . . x′ + k′] = old[y′ . . . y′ + k′] with at least 8
distinct i such that new[x′ + i] 6= old[x′ + i+(y−x)]).

Conventional binary patch tools would translate this
set of perfect matches directly into a patch file. In-
stead, we generate a pairwise disjoint set of “approxi-
mate matches” by extending the matches in each direc-
tion, subject to the requirement that every suffix of the
forward-extension (and every prefix of the backwards-
extension) matches in at least 50% of its bytes. These
approximate matches will now roughly correspond to
blocks of executable code derived from unmodified re-
gions of source code, while the regions of the new file
which are not part of an approximate match will roughly
correspond to modified lines of source code. This pro-
cess of extending the matches is why we ignore any
matches which are not “better” than the previous match
by 8 bytes.

The patch file is then constructed of three parts: First, a
control file containing ADD and INSERT instructions;
second, a ‘difference’ file, containing the bytewise dif-
ferences of the approximate matches; and third, an ‘ex-
tra’ file, containing the bytes which were not part of an
approximate match. Each ADD instruction specifies an
offset in the old file and a length; the appropriate number
of bytes are read from the old file and added to the same
number of bytes from the difference file. INSERT in-
structions merely specify a length; the specified number
of bytes is read from the extra file. While these three files
together are slightly larger than the original target file,
the control and difference files are highly compressible;
in particular, bzip2 tends to perform remarkably well
(probably due to the highly structured nature of these
two files).

We have implemented this method in a tool named
‘BSDiff’.

3 Performance

To evaluate the performance of BSDiff when moving be-
tween two versions of an executable, we use 19 pairs
of DEC UNIX Alpha binaries used in the exposition of
Exediff, the working of which is specific to that plat-
form [BMM99]. In Table 1 we list for each of these
pairs the original size of the new version, the com-

pressed size of the new version, the size of patch pro-
duced by the currently pre-eminent free binary patch
tool, Xdelta [Ma00], the size of patch produced by a
widely used commercial tool, .RTPatch [Ps01], the size
of patch produced by Exediff, and the size of patch pro-
duced by BSDiff. In the interest of a fair comparision,
we recompressed Exediff’s patches with bzip2 (a block
sorting compressor) rather than gzip (a Lempel-Zif com-
pressor) where it was advantageous.

With the exception of two cases where the the differ-
ence was exceptionally small, the Apache 1.2.4 → 1.3.0
case, where none of the methods were superior to sim-
ply compressing the new binary, and the Apache 1.3.0 →

1.3.1 case, where BSDiff was slightly superior to Exed-
iff, there is a very clear pattern: XDelta gives the largest
patches, and Exediff gives the smallest patches, while
BSDiff and .RTPatch come in second smallest and sec-
ond largest respectively. Considering all 19 pairs, and
taking the arithmetic mean weighted by the square root
of the original file size, we find that bzip2 gives 2.8-fold
compression, XDelta gives 5.2-fold compression, .RT-
Patch gives 10.2-fold compression, Exediff gives 13.7-
fold compresion, and BSDiff gives 11.6-fold compres-
sion on average. Excluding the Apache 1.2.4 → 1.3.0
upgrade (we note that those two versions share less than
half of their source code, so the large patches are not sur-
prising), XDelta gives an average of 5.3-fold compres-
sion, .RTPatch gives an average of 11.6-fold compres-
sion, Exediff gives 16.8-fold compression, and BSDiff
gives 13.0-fold compression.

More important than the above consideration of upgrad-
ing between versions (“feature updates”), however, is
security updates. These are fundamentally different,
in that the source code modifications are typically ex-
tremely small — often as small as a single line. We take
the i386 build of FreeBSD 4.7-RELEASE and a snap-
shot of the RELENG 4 7 security branch as a corpus for
comparison here. In total, there are 97 modified bina-
ries, with a total size of 36397575 bytes, which bzip2
can compress to 13566233 (a factor of 2.7). Xdelta pro-
duces patches totalling 3288540 bytes (a factor of 11.0),
and .RTPatch produces patches totalling 749710 bytes (a
factor of 47.7), while BSDiff produces patches totalling
621277 bytes, a reduction by a factor of 58.3.

4 Conclusions

We have presented an algorithm for generating binary
patches which, applied to two versions of an executable



Program Uncompressed Compressed Xdelta .RTPatch Exediff BSDiff
alto: identical binaries 466944 148024 137 n/a 155 142
alto: gcc -O2 → gcc -O3 466944 148024 78390 34755 20793 33633
alto: changed reg. alloc. 450560 148024 97923 34571 15845 23246
alto: extra printf 466944 148024 50613 7524 6237 6299
agrep: 4.0 → 4.1 262144 114388 14631 5910 3531 6066
glimpse: 4.0 → 4.1 524288 222548 109252 37951 23200 31720
glimpseindex: 4.0 → 4.1 442368 193883 98632 25764 18473 21559
wgconvert: 4.0 → 4.1 368640 157536 75230 20712 15688 15806
agrep: 3.6 → 4.0 262144 114502 80346 58124 41554 53490
glimpse: 3.6 → 4.0 524288 222178 177434 140549 104350 130210
glimpseindex: 3.6 → 4.0 442368 193892 144927 105510 79085 97782
netscape: 3.01 → 3.04 6250496 2396661 1100430 351759 284608 302431
gimp: 0.99.19 → 1.00.00 1646592 642725 463878 301879 185962 284278
iconx: 9.1 → 9.3 548864 233056 139409 51195 38121 44961
gcc: 2.8.0 → 2.8.1 2899968 708301 549250 140284 76072 121371
rcc (lcc): 4.0 → 4.1 811008 221826 889 265 303 289
apache: 1.3.0 → 1.3.1 679936 180708 111421 48033 40460 38278
apache: 1.2.4 → 1.3.0 671744 179369 191920 216867 227233 180981
rcc (lcc): 3.2 → 3.6 434176 155090 84456 34098 22019 33136
Average Compression 100% 35.5% 19.4% 9.8% 7.3% 8.6%

Table 1: Sizes of updates produced by bzip2, Xdelta, .RTPatch, Exediff, and BSDiff

program, consistently generates patches considerably
smaller than those produced by the currently preeminent
binary patch tools; when applied to security updates, the
patches produced are extraordinarily compact.

While its performance does not quite match that of a
platform-specific tool, we believe that BSDiff probably
attains close to the best possible performance from a
platform-independent tool.

5 Acknowledgements

The author would like to sincerely thank Robert Muth
for searching through four year old backups to find the
corpus used in [BMM99].

The author would also like to acknowledge support from
the Commonwealth Scholarship Commission, which is
funding his studies at Oxford University.

6 Availability

BSDiff is available under an open source license from

http://www.daemonology.net/bsdiff/

The files used for the performance comparisons above
are available from the author on request.

References

[BMM99] B.S. Baker, U. Manber, and R. Muth, Com-
pressing Differences of Executable Code, ACM
SIGPLAN Workshop on Compiler Support for
System Software, 1999.

[LS99] N.S. Larsson, K. Sadakane, Faster Suffix Sort-
ing, LU-CS-TR:99-214, Department of Com-
puter Science, Lund University, 1999.

[Ma00] J.P. MacDonald, File System Support for Delta
Compression, Master’s Thesis, University of
California at Berkeley, 2000.

[Ps01] Pocket Soft Inc, .RTPatch,
http://www.pocketsoft.com, 2001.

[Tr99] A. Tridgell, Efficient Algorithms for Sorting
and Synchronization, Ph.D. Thesis, The Aus-
tralian National University, 1999.


