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Abstract

This thesis consists of three parts, each of independent interest, yet tied

together by the problem of matching with mismatches. In the first chap-

ter, we present a motivated exposition of a new randomized algorithm

for indexed matching with mismatches which, for constant error (substi-

tution) rates, locates a substring of length m within a string of length n

faster than existing algorithms by a factor of O(m/ log(n)).

The second chapter turns from this theoretical problem to an entirely

practical concern: delta compression of executable code. In contrast to

earlier work which has either generated very large deltas when applied to

executable code, or has generated small deltas by utilizing platform and

processor-specific knowledge, we present a näıve approach — that is, one

which does not rely upon any external knowledge — which nevertheless

constructs deltas of size comparable to those produced by a platform-

specific approach. In the course of this construction, we utilize the result

from the first chapter, although it is of primary utility only when produc-

ing deltas between very similar executables.

The third chapter lies between the horn and ivory gates, being both highly

interesting from a theoretical viewpoint and of great practical value. Us-

ing the algorithm for matching with mismatches from the first chapter,

combined with error correcting codes, we give a practical algorithm for

“universal” delta compression (often called “feedback-free file synchro-

nization”) which can operate in the presence of multiple indels and a

large number of substitutions.
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Preface

This thesis is, in large part, a tribute to the irrepressibility of the human mind. When

I started my D.Phil studies in October 2001, I was planning to work on parallel

computing — specifically, attacking large computational problems1 over the Internet

using spare computing power, storage, and network bandwidth. I was making steady

progress towards this when illness intervened, first sending me to hospital in January

2003, and subsequently making it difficult to concentrate on my work for the following

few months.

It was during this period that the first seeds which would later become this thesis

were planted. Adopting a Feynmanesque attitude — ‘if I can’t work, I might as

well play’ — I turned to a problem which had been plaguing the FreeBSD operating

system [18] for years: security patches. Apart from a few abortive attempts, and

despite many repeated pleas on the mailing lists, FreeBSD had no existing binary

update system; instead, security fixes were distributed as source code patches, and

each system administrator would recompile and reinstall the entire operating system.

Since this process took several hours, and required manual intervention at half a

dozen points, this often meant that important security fixes were ignored entirely.

A few weeks after I finished putting together a working binary security update

system for FreeBSD [44], I read an email on a public mailing list, from someone

who was unaware of my existing work, asking about the potential for using delta

compression in distributing binary security patches; in particular, he asked about

using Xdelta [35]. This was something I had been considering, mostly for financial

reasons — at 30MB per installation, it wouldn’t take many people updating their

systems before the bandwidth started costing “real money” — but I hadn’t yet found

1240-element fast Fourier transforms, for example.
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time for this. Some 36 hours and 281 lines of code later, however, I was already

producing patches 35% smaller than those from Xdelta; over the following month I

(while feeling increasingly guilty about neglecting the work I was “supposed” to be

doing) made significant further improvements, which I released to the open source

community and used in my binary security update system.2

Over the second half of 2003, this thesis gradually took form: My investigations

into delta compression of executable code led me to a new algorithm for matching

with mismatches; with this I made further improvements to my delta compression

work; and then while walking around Wadham college in October 2003, I stumbled

across the surprising algorithm for “universal” delta compression which forms the

core of the third chapter of this thesis. From there onwards, for the duration of 2004,

all that remained was the tedious process of filling in details.

If a mathematician is a machine for turning coffee into theorems, a computer

scientist is a machine for converting caffeine into algorithms. As with mathematicians

and theorems, the output of these machines may bear little resemblance to that which

was originally sought, but I hope the reader will find this particular body of output

to be both interesting and useful.

2In this manner, FreeBSD became the first commodity operating system, by a margin of over
a year, to use delta compression for binary security patches. Microsoft Windows added similar
capabilities in the summer of 2004 as part of the XP SP2 service pack, and starting with the OS
X 10.3.4 → 10.3.5 upgrade, Apple has been using the code I wrote for FreeBSD to reduce the
bandwidth consumed by 10.x.y → 10.x.(y + 1) upgrades.
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Chapter 0

Introduction

In the first chapter of this thesis, we introduce a novel approach to string match-

ing problems, namely that of projecting vectors onto subspaces of relatively prime

dimension. Providing that we are operating on sufficiently random inputs, we demon-

strate that these projections can provide us with useful information about the original

strings, while (thanks to their reduced length) allowing for much faster computation.

In this manner, we construct a new — and vastly improved — algorithm for matching

with mismatches, first in its most obvious form, and later in a more computationally

efficient manifestation.

This first chapter is not for the faint of heart: It draws on a wide array of results,

including the Fast Fourier Transform [13] over non-power-of-two lengths [7], the Chi-

nese Remainder Theorem [30, 54], priority queues, the well-known probability bounds

of Hoeffding [24] and Chernoff [12], and even results concerning the distribution of

prime numbers [15].

The remaining two chapters concern themselves with applications of the algorithm

from Chapter 1, and here the reader will likely find an easier road. In the second

chapter, we present a näıve method for delta compression of executable code; that

is, a method for constructing patches between two versions of a (compiled) com-

puter program, which takes advantage of the structure of such files while remaining

entirely platform-agnostic. This is theoretically interesting — the possibility of a

näıve method producing patches of size comparable to those produced by a non-näıve

method indicates that knowing the instruction set of a processor is rather less useful

than one might expect — but is primarily of practical importance: Because this ap-
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proach is näıve, it can be applied to any platform desired, allowing highly effective

delta compression to be used on esoteric platforms for which it would otherwise be

unavailable.

The third chapter extends the concept of delta compression into the concept of

universal delta compression: Rather than having two files and attempting to construct

a patch between them, we have one file and an estimate of the similarity between the

two files. To many people, this result is profoundly counter-intuitive — the idea of

constructing a “patch” which allows a given file to be reconstructed from any reference

file is combinatorially absurd — but the problem is made feasible by the fact that the

party applying the patch already has a file which is similar to the target, even if this

file is unknown to the party constructing the patch.

We expect that these two applications will be of significant practical importance

in the coming years, and that, consequentially, a large proportion of those reading this

thesis will be concerned more with the applications than with the beautiful algorithm

for matching with mismatches which underlies them. We strongly recommend that

these readers start reading at Chapter 2, and take for the moment as given that an

algorithm for matching with mismatches exists with the properties required in the

later chapters. Even on second reading, those concerned merely with the applications

will not need to read all of Chapter 1; of that chapter, the final two sections alone

can be taken as presenting a practical algorithm, even if they fail to provide any

justification or motivation.

But to those who are more interested in algorithms than applications: Welcome;

and let us now begin the first chapter.
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Chapter 1

Matching with Mismatches

1.1 Introduction

The problem of approximate matching with respect to edit distance (also known as

Levenshtein distance) — that is, given two strings S, T of lengths n, m over an

alphabet Σ, n > m (and usually n � m), to find all substrings1 S′ of S such that

S′ can be transformed into T via a sequence of at most k substitutions, insertions,

and deletions2 — has been studied extensively [39]. Of particular theoretical interest

are “filtering” algorithms which, for low error rates (k < αm, for some α depending

upon |Σ|), operate in O(n(k + log m)/m) time, which is equal to the proven lower

bound for non-indexed algorithms (those which are not permitted to perform any

pre-processing of the string S) [11].

The problem of matching with mismatches — a more restricted problem, where

the only transformations permitted are substitutions — has received considerably less

attention, probably due to its perceived lack of relevance. There are few naturally

occurring problems where substitutions occur in the complete absence of insertions

and deletions (hereafter, “indels”); however, there are many cases where substitutions

are far more common than indels: A visual inspection of a number of related protein

sequences suggests that substitutions are 10–20 times as common as indels, while

computer programs compiled from closely related source code (e.g., before and after

1Some authors use the term “substring” to refer to what is more properly termed a “subse-
quence”. In this thesis, we adopt the more conventional definition that a substring of S is a string
SiSi+1Si+2 · · ·Sj for some i ≤ j.

2For large values of k, the number of such substrings grows as O(nk); we therefore take “finding”
the substrings to mean “enumerating the positions i in S where the substrings start”.
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a security patch) often have substitution rates several thousand times their indel

rates. In light of this, it seems clear that the problem of matching with mismatches

is worth considering.

The “problem” of matching with mismatches is in fact a number of related prob-

lems. Taking δ : Σ × Σ → R as a function which indicates how closely two symbols

match, and defining

Vi =
m−1
∑

j=0

δ(Si+j , Tj),

the following problems are frequently considered:

1. Compute Vi for all 0 ≤ i ≤ n − m.

2. Given some k ∈ R, find all integers i ∈ [0, n − m] satisfying Vi > k.

3. Given some t ∈ N, find values x1 . . . xt such that Vxi takes on the t largest

possible values.

4. Let t ∈ N be given and a set X = {x1 . . . xt} be fixed but unknown, and

suppose that S and T are generated by a random process in such a manner that

E(δ(Si, Tj)|i − j ∈ X) = χ > χ̄ = E(δ(Si, Tj)|i − j 6∈ X) for some constants

χ, χ̄ ∈ R. Find X with high probability.

The reader will note that problems 1–4 are in decreasing order of difficulty, i.e.,

given an algorithm for solving problem i, it is easy to construct an algorithm for

solving problem i + 1. In spite of this, we argue that the last problem is often

the most natural formulation to consider: In circumstances where the problem of

matching with mismatches occurs, the extent to which two strings match is generally

not significant in itself, but rather is a marker for an underlying binary property –

for example, having evolved from the same original genomic sequence, or having been

compiled from the same source code – and thus it is reasonable to expect alignments

of the string T against S to either match well or not at all3.

3This can be viewed as akin to the difference between gold mining and searching for buried
treasure — in both cases, we are looking for gold, but in the latter case, there is a clear distinction
between gold and non-gold.
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In addition to the four problems stated above, there are a number of variations

which can be treated using improved algorithms. Whereas the vector V can be

computed for arbitrary δ in O(n |Σ| log m) time by using the FFT [17], it is possible to

compute V in O(n
√

m log m) time if δ is a zero-one function and {(α, β) : δ(α, β) = 1}
is an equivalence relation, by treating common symbols with the FFT and uncommon

symbols with a quadratic-time algorithm [5]. Even more interestingly, the vector V

can be estimated for such a zero-one function δ using a randomized algorithm; taking τ

to be an integer parameter between 1 and |Σ| as desired, in time O(nτ log m) a vector

V ′ can be randomly computed such that E(V ′
i ) = Vi and Var(V ′

i ) ≤ (m − Vi)
2/τ [3, 4].

Finally, and as alluded to earlier, each problem may be considered in both indexed

and non-indexed forms, depending upon whether one is permitted to perform some

precomputation (“indexing”) using the string S before the string T is made available.

As we shall see in later chapters, an indexed algorithm can be very useful when

attempting to solve many problems with the same S but varying strings T .

In this chapter, we shall consider the last of the problems listed above, with in-

dexing permitted, and with δ a zero-one function representing an equivalence relation

as described above.

1.2 Problem statement

In order to allow us to formally prove anything about the algorithms we shall be

presenting, we must first give a precise definition of the problem we shall be solving.

We define therefore the problem as follows:

Problem space: A problem is determined by a tuple (n,m, t, p, ε, Σ, X)

where {n,m, t} ⊂ N, {p, ε} ⊂ R, m < n, 0 < ε, 0 < p, |Σ| is even, and

X = {x1, . . . , xt} ⊂ {0, . . . , n − m} with xi ≤ xi+1 − m for 1 ≤ i < t.

Construction: Let a string T of length m be constructed by selecting

m characters independently and uniformly from the alphabet Σ. Let

a string Ŝ be constructed by randomly selecting n characters indepen-

dently and uniformly from the alphabet Σ. Let a string S of length n

be constructed by independently taking Si = Ti−xk
with probability p if
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∃xk ∈ {i − m, . . . , i − 1} and Si = Ŝi otherwise (with probability 1− p or

1 depending upon whether X ∩ {i − m, . . . , i − 1} is non-empty).

Problem (indexing): Given (n,m, t, p, ε, Σ, S) generate an (optionally ran-

domized) index S̄.

Problem (matching): Given (n,m, t, p, ε, Σ, S̄, T ), find (optionally in a

randomized manner) the set X with probability at least 1 − ε for each

problem.

The construction above produces strings S and T which are in a sense “as random

as possible”4 subject to the requirement that characters from S and T are more likely

to match at a set of “good” offsets.

The model given above is quite restrictive, and in practice we do not expect

inputs to be constructed in this manner5, but as with most theoretical models, it

has the important and necessary characteristics while still being simple enough to be

useful. At the end of this chapter, we shall describe some changes which will make

the algorithms we provide more useful for operating on “real-world” data.

Clearly, for it to be possible to compute the set X with probability > 1/2, the

values Vi for i 6∈ X must be smaller than the values Vj with j ∈ X. In light of the

construction above, the probability of any given pair (i, j) ∈ X̄ × X not satisfying

Vi < Vj is asymptotically given by exp(−O(m)) with an implicit constant depending

upon p and |Σ| alone6, and thus the set X can only be reconstructed with probability

1− ε by any algorithm if m = Ω(log(n/ε)), where the implicit constant depends upon

p and |Σ|.
We will give a O(n) algorithm for constructing S̄, and a

O

(

n log (nt/ε) log m

mp2

)

4Formally, whereby the entropy is maximized.
5In particular, most inputs do not have characters equidistributed across the alphabet: In natural

language, certain letters are far more common than others, while computer data formats tend to
include large numbers of 0 bytes.

6The values Vi and Vj can be seen as the sum of m Bernoulli trials; taking the (asymptotically-
correct) normal approximation, we have two normal distributions with means O(m) apart and
standard deviations of O(

√
m).
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randomized algorithm for finding X. To our knowledge, this is the first algorithm for

any problem in the field of approximate string matching which is sublinear in n for

constant error rate k/m ≈ 1 − p and m = Θ(nβ) for some β > 0.

1.3 Projective searching

It is well known that integers can be reconstructed from their images modulo relatively

prime values — in other words, their projections onto groups Zm — through use of

the Chinese remainder theorem [54]. Reconstructing sets of integers is more difficult,

since it is not clear which element of one image corresponds to a given element of

another image7,8. Nevertheless, at the expense of randomization, and for a small

number of images, this is possible.

First, we present a lemma concerning the distribution of prime numbers.

Lemma 1.1. Let π(x) denote the number of primes less than or equal to x. Then

π (x (1 + 2/ log x)) − π(x) ≥ x

(log x)2

for all x ≥ 5.

Proof. Based on computations concerning the location of non-trivial zeroes of the

Riemann zeta function [9], it has been shown that

x

log x

(

1 +
0.992

log x

)

≤ π(x) ≤ x

log x

(

1 +
1.2762

log x

)

for all x ≥ 599 [15].

Using these bounds and making the substitutions y = log x, a = 0.992, b = 1.2762

for the benefit of space, we find that for x ≥ 599,

π (x (1 + 2/ log x)) ≥ x (1 + 2/y)

log (x (1 + 2/y))
·
(

1 +
a

log (x (1 + 2/y))

)

≥ x (1 + 2/y)

y + 2/y
·
(

1 +
a

y + 2/y

)

=
x (y + 2)

(

y2 + ay + 2
)

(

y2 + 2
)2

7Indeed, working around this problem is a challenge in a number of number-theoretic algorithms,
and for a brief time a related difficulty held up the development of the Number Field Sieve.

8One tempting algorithm would reconstruct a set X by reconstructing and then finding the roots
of
∏

α∈X (x − α), but this takes time cubic in the size of X, and requires a number of images linear
in |X|, so for our purposes it is interesting but not useful.
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π (x (1 + 2/ log x)) − π (x) ≥ x (y + 2)
(

y2 + ay + 2
)

(

y2 + 2
)2

− x (y + b)

y2

=
x

y2
· (2 + a − b)y4 + (2a − 2)y3 + (4 − 4b)y2 − 4y − 4b

(

y2 + 2
)2

≥ x

y2
=

x

(log x)2

where the final inequality holds for y ≥ 3.2, i.e., x ≥ 25. For 5 ≤ x ≤ 599, the result

can be verified numerically.

The constant 2 can be reduced to 1.2842 + ε for all x greater than an easily

computable x(ε) by the same argument; using a sufficiently strong form of the prime

number theorem [30] it can be shown that 1+ε suffices for x greater than some bound

x0(ε).

With that preliminary result, we can now provide a bound on the probability

that a set of random projections will have, as their intersection, the correct set, by

considering the selection of “unlucky” primes which would be necessary for any value

0 ≤ y < n to be erroneously contained in the intersection.

Theorem 1.1. Let n, t, k ∈ N,L ≥ 5, and X = {x1, . . . , xt} ⊆ {0, . . . , n−1} be fixed.

Let p1 . . . pk be selected uniformly at random from the set of primes in the interval

[L,L(1 + 2/ log L)), and let

X̄ = {0, . . . , n − 1} ∩ (X + p1Z) ∩ · · · ∩ (X + pkZ) .

Then X ⊆ X̄, and equality holds with probability at least

1 − n

(

t (log n) (log L)

L

)k

.

Proof. That X is a subset of the given intersection follows, by definition, from the

observation that it is a subset of each element in the intersection. We turn therefore

to the second part of the theorem, of deriving a lower bound on the probability that

equality holds.

Suppose that equality does not hold, and let y ∈ X̄ − X. Then 0 ≤ y ≤ n − 1,

and y ∈ X + piZ for all i ∈ {1, . . . , k}. Consequently,

pi |
t
∏

j=1

(

y − xj
)

∀i ∈ {1, . . . , k}.
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Since this product is nonzero and bounded from above by nt, and the pi are chosen

from the interval [L,L(1 + 2/ log L)), we conclude that for any given y ∈ X̄ − X, all

the pi must lie within a set of size at most logL nt = t log n/ log L “unlucky” primes.

However, from Lemma 1.1, we know that there are at least L/(log L)2 primes in the

interval [L,L(1 + 2/ log L)), so each prime pi lies within that set with probability at

most t (log n) (log L) /L.

Consequently, each of the n values in {0, . . . , n−1} lies in X̄−X with probability

at most (t (log n) (log L) /L)k, and the result follows.

Note that this bound applies independently of the set X. This is an important

distinction, since for random sets X, the probability of inaccurate reconstruction can

be trivially bounded by ntk/Lk — this result demonstrates that even for maliciously

chosen sets X, we can perform the reconstruction fairly easily. This provides a useful

avenue for attacking the problem of matching with mismatches: If we can compute

the sets X mod P quickly for arbitrary primes P , then computing X with arbitrarily

small probability of error is reduced to the problem of computing the intersection X̄.

To see how these sets can be efficiently computed, consider once again the match

count vector V , and the restrictions imposed upon it by our formulation of the prob-

lem. In most positions, V behaves essentially as Gaussian noise with mean m |Σ|−1

and roughly the same variance; in a few positions (those corresponding to the xi we

wish to find), it “spikes” up to around pm. We have a signal which we wish to find,

within a background of noise.

Now consider what happens if we take the natural projection of V from R
n onto

the subspace R
ZP . The signal remains, although its locations (i.e., the values xi) are

reduced modulo P ; and the level of “background noise” increases. Providing that P

is large enough — that is, providing that we don’t allow the noise level to increase

too much — we can find the set X mod P (subject to a given probability of error ε)

by taking the largest values of this projection.

Algorithm 1.1. Let S, T, Σ, n,m, p, t, and ε be given as specified in the problem de-

scription above, with

16 log(4n/ε)

p2
< m < min

(√
32nε

t log n
,
8(
√

n + 1) log(4n/ε)

p2

)

.
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Then:

1. Set

k =

⌈

log(2n/ε)

log 8n − log (mt log n)

⌉

L =
8n log (2kn/ε)

mp2 − 8 log (2kn/ε)

k̂ = dlog n/ log Le

X̄ = {}.

2. Compute P = {x ∈ N : L ≤ x < L(1 + 2/ log L), x prime}.

3. For i = 1 . . . k, pick pi ∈ P and Σi ⊂ Σ with |Σi| = 1
2 |Σ| uniformly at random,

and define φi : Σ → {−1, 1} by φi(x) = (−1)|Σi∩{x}|.

4. For i = 1 . . . k, compute the vectors A(i), B(i) ∈ R
pi where for 0 ≤ j < pi

A
(i)
j =

⌈

n−j
pi

⌉

−1
∑

λ=0

φi(Sj+λpi
)

B
(i)
j =

⌈

m−j
pi

⌉

−1
∑

λ=0

φi(Tj+λpi
).

5. Compute vectors C(i) ∈ R
pi as the cyclic correlations of respective A(i) and B(i)

C
(i)
j =

pi
∑

r=0

A
(i)
r+jB

(i)
r

using the FFT, and compute the set X(i) = {j ∈ N : 0 ≤ j < pi, C
(i)
j > mp/2}.

6. For all k̂-tuples (x1, . . . , xk̂
) ∈ X(1) × · · · × X(k̂), compute the unique 0 ≤ x <

p1p2 . . . p
k̂

with the given images modulo the respective primes; if x < n and

x mod pi ∈ X(i) ∀i ∈ {k̂ + 1 . . . k}, then set X̄ = X̄ ∪ {x}. 9

7. Output X̄.

9With the bounds on m as given earlier, the second part of this step simplifies somewhat since
we will always have k̂ = k. We claim, without proof, that the algorithm is in fact useful for a wider
range of values of m, including values for which we might have k̂ < k, and include this detail here
for that reason.
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Theorem 1.2. The output of Algorithm 1.1 will consist of the elements of X with

probability at least 1 − ε; further, if

m � 16 log(4n/ε)

p2

and n � 1, then the algorithm, not including the computation of the vectors A(i),

completes in

(16 + o(1))Cn log(n/ε) log
n log(n/ε)

mp2

mp2

time, where C is a constant such that a length-L cyclic correlation can be computed

in CL log L time using the FFT.

Proof. We first observe that the restrictions on m provide that k = k̂ = 2, and
√

n < L < n. Now defining

σpi(n,m, j) = |{(x, y) ∈ Z × Z : 0 ≤ x < n, 0 ≤ y < m, x ≡ y + j mod pi}| ,

we have

1

2

(

C
(i)
j + σpi(n,m, j)

)

=
1

2





∑

r∈Zpi

A
(i)
r+jB

(i)
r + σpi(n,m, j)





=
1

2









∑

r∈Zpi









∑

0≤x<n
x≡r+j

φi(Sx)
∑

0≤y<m
y≡r

φi(Ty)









+ σpi(n,m, j)









=
1

2

∑

0≤x<n
0≤y<m
x≡y+j

1 + φi(Sx)φi(Ty)

=
∑

0≤x<n
0≤y<m
x≡y+j

δ(φi(Sx), φi(Ty))

for all j where δ(α, β) = 1 if α = β and δ(α, β) = 0 otherwise.

Now consider an individual term δ(φi(Sx), φi(Ty)) from the above sum. If x−y 6∈
X, then from the construction given in Section 1.2, Sx and Ty are independent and

uniformly random elements of Σ; consequently φi(Sx) and φi(Ty) independently take

uniformly random values from {−1, 1}. If x − y ∈ X, then the construction given

13



earlier defines Sx = Ty with probability p, and with probability 1 − p the values

Sx and Ty are independent10. Consequently, the values 1
2

(

C
(i)
j + σpi(n,m, j)

)

are

independent sums of σpi(n,m, j) Bernoulli trials, and have expected values

E

(

1

2

(

C
(i)
j + σpi(n,m, j)

)

)

=
1

2
σpi(n,m, j) +

mp

2
ci,j ,

where ci,j is the number of elements of X congruent to j mod pi.

From the Hoeffding bound [24] we note that

PS,T,φi
(j ∈ X(i)|j 6∈ X mod pi) ≤ exp

(

−2
(mp

4

)2
σpi(n,m, j)−1

)

≤ exp





−(mp)2

8
(

n
pi

+ 1
)

m





= exp

( −p2mpi

8(n + pi)

)

and the same bound applies to PS,T,φi
(j 6∈ X(i)|j ∈ X mod pi). Consequently, using

the result of Theorem 1.1,

P (X̄ = X) ≥ 1 − n

(

t(log n)(log L)

L

)k

− P (∃i : X(i) 6= X mod pi)

≥ 1 − n

(

t(log n)(log n)

8n(log n)/m

)k

−
∑

i=1...k

pie

−p2mpi
8(n+pi)

≥ 1 − n

(

mt log n

8n

)

log(2n/ε)
log 8n−log(mt log n)

− kLe
−p2mL
8(n+L)

= 1 − n (2n/ε)−1 − kne− log(2kn/ε)

= 1 − ε/2 − ε/2 = 1 − ε

as desired. To establish the time bound, we note that once the A(i) are precomputed

the time is dominated by the computation of the vectors C(i); this takes kCL log L =

2CL log L time. However, we are given that

m � 16 log(4n/ε)

p2
,

10Note that P (Sx = Ty) = p + (1 − p) |Σ|−1 6= p — the construction forces the characters to be
equal with probability p, but they might randomly happen to be equal anyway.
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and consequently

L =
8(1 + o(1))n log(n/ε)

mp2

kCL log L =
(16 + o(1))Cn log(n/ε) log

n log(n/ε)
mp2

mp2

as required.

The vectors C(i) can be seen as the projections of approximations V̄ to the match

count vectors V onto R
pi .

1.4 Searching with fuzzy projections

In Algorithm 1.1, the complexity is determined almost entirely by the minimum value

of L necessary for the X(i) to be computed. Computing X(i) = X mod pi is, however,

unnecessary; it is sufficient that one can compute some X(i) = X mod pi∪Y (i), where

the size of Y (i) is bounded and its elements are random, as shown by the following

theorem:

Theorem 1.3. Let n, t, k ∈ N, L ≥ 5, β ∈ [0, 1) and X = {x1 . . . xt} ⊆ {0, . . . , n−1}
be fixed. Let p1 . . . pk be selected randomly from the set of primes in the interval

[L,L(1 + 2/ log L)), let Y (i) = {yi,1, . . . , yi,βpi
} ⊂ {0, . . . , n − 1} − X be selected

randomly for each i = 1, . . . , k, and let

X̄ = {1, . . . , n} ∩
(

(X ∪ Y (1)) + p1Z

)

∩ · · · ∩
(

(X ∪ Y (k)) + pkZ

)

.

Then X ⊆ X̄, and equality holds with probability at least

1 − n

(

β +
t(log n)(log L)

L

)k

.

Proof. The same argument as used in Theorem 1.1 holds, except that there is an

additional probability β of y falling into each of the k sets.

This provides an obvious direction for improving our algorithm: Rather than

computing X(i) = X mod pi, which requires that the values C
(i)
j for j ∈ X mod pi

are larger than all other C
(i)
j , it is sufficient to compute X(i) ⊇ X mod pi by taking

the t + βpi values of j with the largest values C
(i)
j . We no longer need the spikes
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in the projections of the match count vector to rise entirely above the surrounding

noise; it suffices if they are close to the top.

We now present two trivial lemmas:

Lemma 1.2. The Chernoff bound [12]

P (X > (1 + δ)µ) <

(

eδ

(1 + δ)(1+δ)

)µ

where µ = E(X), δ > 0, and X is the sum of independent random 0-1 variables is

equivalent to

P (X > Y ) < exp(Y − µ + Y (log(µ) − log(Y )))

where Y is a constant greater than µ and X is the sum of independent random 0-1

variables.

Proof. Taking Y = (1 + δ)µ,

P (X > Y ) = P (X > (1 + δ)µ)

<

(

eδ

(1 + δ)(1+δ)

)µ

= exp(µ(δ − (1 + δ) log (1 + δ)))

= exp(µδ − µ(1 + δ) log (µ(1 + δ)/µ))

= exp(Y − µ − Y log (Y/µ))

= exp(Y − µ − Y (log Y − log µ))

= exp(Y − µ + Y (log(µ) − log(Y )))

as required.

Lemma 1.3. Let X and Y be random variables and F,G : R → [0, 1] be monotonic

differentiable functions such that

P (X ≤ γ) ≤ F (γ)

P (Y ≥ γ) ≤ G(γ)

F (−∞) = G(∞) = 0

F (∞) = G(−∞) = 1
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Then for any γ0,

P (X < Y ) ≤ F (γ0) +

∫ ∞

γ0

G(γ)F ′(γ)dγ

Proof.

P (X < Y ) = EY (PX(X > Y ))

≤ EY (F (Y ))

= EY

(

∫ Y

−∞
F ′(γ)dγ

)

=

∫ ∞

−∞
P (Y ≤ γ)F ′(γ)dγ

≤
∫ ∞

−∞
G(γ)F ′(γ)dγ

≤
∫ γ0

−∞
1 · F ′(γ)dγ +

∫ ∞

γ0

G(γ)F ′(γ)dγ

= F (γ0) +

∫ ∞

γ0

G(γ)F ′(γ)dγ

We now provide a theorem concerning the probability that the “spikes” we seek

to find come “close enough” to rising above the level of the noise.

Theorem 1.4. Let xj be independent random variables (0 ≤ j ≤ n), which are

respectively the sums of σ(j) independent Bernoulli trials (where the trials involved

in xi are unrelated to the trials involved in xj for i 6= j). Further let the expected

value of xj be µσ(j) for 1 ≤ j ≤ n and the expected value of x0 be µσ(0) + α. Then

for 16α2

σn < β, −2α2

σ < log β < −1
2 ,

P (
∣

∣{j : 1 ≤ j ≤ n, xj − µσ(j) > x0 − µσ(0)}
∣

∣ > βn) < 2e
−
(

α
√

2√
σ
−
√
− log β

)2

,

where σ ≥ max σ(j).

Proof. From the Hoeffding bounds, we note that for 1 ≤ j ≤ n and 0 ≤ δ ≤ 1,

P (xj − µσ(j) ≥ δα) ≤ e
−2δ2α2

σ(j) ≤ e
−2δ2α2

σ

P (x0 − µσ(0) ≤ δα) ≤ e
−2(1−δ)2α2

σ(0) ≤ e
−2(1−δ)2α2

σ .
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Making the substitution δ̂ = 1
α

√

−σ log(β)/2 (note that 0 < δ̂ < 1 from the bounds

assumed on log β above), applying the Chernoff bound in the form given in Lemma

1.2, and noting that e−cx2
is convex for x2 > 1

2c provides:

P (
∣

∣{j : 1 ≤ j ≤ n, xj − µσ(j) ≥ δα}
∣

∣ ≥ βn) ≤ e
nβ−ne

−2δ2α2
σ +nβ

(

−2δ2α2

σ −log β
)

= e
n

(

e
−2α2δ̂2

σ −e
−2α2δ2

σ

)

+2nβα2

σ

(

δ̂2−δ2
)

≤ e
n
(

4α2δ̂
σ β

(

δ−δ̂
))

+2nβα2

σ

(

δ̂2−δ2
)

= e
−2nβα2

σ

(

δ−δ̂
)2

for all δ > δ̂.

For clarity11 we note that the above is a Chernoffian bound on the (βn)th largest

of the values x1 . . . xn. If we had σ(1) = . . . = σ(n) = σ, then the “typical” value of

the (βn)th largest value would be approximately µσ+
√

−σ log β/2 as this is the value

which individual xi will exceed with probability roughly β; where Chernoff bounded

the probability of a random variable diverging from its mean by a value exponential in

the square of the divergence, we have done the same to the probability of the (βn)th

largest value from a set of random variables diverging from the typical value of the

(βn)th largest value (but with a different exponential constant).

Now if we define X by Xα = x0 − µσ(0), Y to be the largest value such that
∣

∣{j : 1 ≤ j ≤ n, xj − µσ(j) ≥ Y α}
∣

∣ ≥ βn, and

F (δ) =

{

exp(−2(1 − δ)2α2/σ) δ ≤ 1
1 δ ≥ 1

G(δ) =

{

1 δ ≤ δ̂

exp(−2nβα2(δ − δ̂)2/σ) δ ≥ δ̂

then the conditions of Lemma 1.3 hold.

11... and to use up space on a page which would otherwise be half-empty...
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Taking γ0 = δ̂, we therefore have

P (
∣

∣{j : 1 ≤ j ≤ n, xj − µσ(j) > x0 − µσ(0)}
∣

∣ > βn) = P (Y > X)

≤ e−
2α2(1−δ̂)2

σ +

∫ 1

δ̂
e
−2nβα2(δ−δ̂)2

σ · d

dδ

(

e
−2(1−δ)2α2

σ

)

dδ

= e−
2α2(1−δ̂)2

σ +

∫ 1

δ̂

4(1 − δ)α2

σ
e
−2α2

σ

(

nβ(δ−δ̂)2+(1−δ)2
)

dδ

= e−
2α2(1−δ̂)2

σ

(

1 + e
2(1−δ̂)2α2

σ(1+nβ)

∫ 1

δ̂

4(1 − δ)α2

σ
e
−2α2(1+nβ)

σ

(

δ−nβδ̂+1
1+nβ

)2

dδ

)

< e−
2α2(1−δ̂)2

σ

(

1 + e
2(1−δ̂)2α2

σ(1+nβ)
4(1 − δ̂)α2

σ

∫ 1

δ̂
e
−2α2(1+nβ)

σ

(

δ−nβδ̂+1
1+nβ

)2

dδ

)

= e−
2α2(1−δ̂)2

σ



1 + e
2(1−δ̂)2α2

σ(1+nβ)
4(1 − δ̂)α2

σ

∫
nβ(1−δ̂)
1+nβ

δ̂−1
1+nβ

e
−2α2(1+nβ)x2

σ dx





< e−
2α2(1−δ̂)2

σ

(

1 + e
2(1−δ̂)2α2

σ(1+nβ)
4(1 − δ̂)α2

σ

(

∫ 0

δ̂−1
1+nβ

1dx +

∫ ∞

0
e
−2α2(1+nβ)x2

σ dx

))

= e−
2α2(1−δ̂)2

σ

(

1 + e
2(1−δ̂)2α2

σ(1+nβ)

(

4(1 − δ̂)2α2

σ(1 + nβ)
+

√
2πα(1 − δ̂)
√

σ(1 + nβ)

))

≤ e−
2α2(1−δ̂)2

σ

(

1 + e
2
16

(

4

16
+

√
2π√
16

))

< 2e−
2α2(1−δ̂)2

σ

= 2e
−
(

α
√

2√
σ
−
√
− log β

)2

,

as desired, using the fact that
α2(1−δ̂)2

σ(1+nβ)
< α2

σnβ < 1
16 on the third line from the end.

We now present an improved algorithm which is significantly faster than Algorithm

1.1, at the expense of increased complexity:

Algorithm 1.2. Let S, T, Σ, n,m, p, t, and ε be given as specified in the problem de-

scription above. Assume further that:

m < min

{

3
√

n2ε/2

t(log n)2
,

√

nε/2

8p2

}

.

Then:
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1. Set

k =

⌈

log(2n/ε)

log n − log mt(log n)2

⌉

β =
1

2
k
√

ε/2n

x =
(

√

− log β +
√

log(4kt/ε)
)2

L =
2nx

mp2 − 2x

k̂ = dlog n/ log Le

X̄ = {}.

2. Compute P, pi, φi, A
(i), B(i), C(i) as in Algorithm 1.1.

3. Let X(i) be the set of size βpi + t of values j for which C
(i)
j takes the largest

values.

4. For all k̂-tuples (x1, . . . , xk̂
) ∈ X(1) × · · · × X(k̂), compute the unique integer

0 ≤ x < p1p2 . . . p
k̂

with the given images modulo the respective primes; if x < n

and x mod pi ∈ X(i) ∀i ∈ {k̂ + 1 . . . k}, then set X̄ = X̄ ∪ {x}.

5. Output X̄.

Theorem 1.5. The output of Algorithm 1.2 will consist of the elements of X with

probability at least 1 − ε.

Further, if
3
√

nε2 � mp2,

n � 1, and the A(i) are precomputed, then the algorithm operates in

(2 + o(1))
(

√

log(n/ε) +
√

3 log(t/ε)
)2

Cn log
n log(n/ε)

mp2

mp2

time, where C is a constant such that a length-L cyclic correlation can be computed

in CL log L time using the FFT.
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Proof. We consider first the sets X(i). As in Theorem 1.2, 1
2

(

C
(i)
j + σpi(n,m, j)

)

is the sum of σpi(n,m, j) Bernoulli trials, and has expected value σpi(n,m, j)/2 if

j 6∈ X mod pi and expected value at least σpi(n,m, j)/2 + mp
2 if j ∈ X mod pi.

Taking α = mp/2, σ = (n + L)m/L, we note that

−2α2

σ
= −x < log β < log

1

2
<

−1

2

16α2

σpi
<

16α2

σL
=

4mp2

n + L
<

1

2

√

ε/2n ≤ β,

so Theorem 1.4 applies with n = pi. Consequently, for any j ∈ X mod pi we find:

P (j 6∈ X(i)) < 2e
−
(

α
√

2√
σ
−
√
− log β

)2

= 2e
−
(

√

m2p2L
2(n+L)m

−
√
− log β

)2

= 2e−(
√

x−
√
− log β)2

= 2e− log 4kt/ε

=
ε

2kt

Since |X| ≤ t, we conclude that X mod pi ⊆ X(i) for all 1 ≤ i ≤ k with probability

at least 1 − ε/2.

We can now apply Theorem 1.3 and (including the probability that the X (i) are

incorrect, and noting on the second line that L > 2n/m) find that

P (X̄ 6= X) < 1 − n

(

β +
t log n log L

L

)k

− ε/2

< 1 − n

(

β +
mt(log n)2

2n

)k

− ε/2

≤ 1 − n

(

1

2
k
√

ε/2n +
1

2
k
√

ε/2n

)k

− ε/2

= 1 − ε

as desired.

To establish the time bound, we first note that

m <

√

nε/2

8p2
<

√
n

p2
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L =
2nx

mp2 − 2x
>

n

mp2
>

√
n,

so we have k̂ = 2. Similarly,

n

mt(log n)2
>

n
3
√

n2ε/2
= 3
√

2n/ε,

so k ∈ {2, 3}.
The only steps in the algorithm which take more than O(L) time are the compu-

tation of the C(i), which takes CkL log L time using the FFT (by the definition of

C), and step 4, which takes O((βL + t)2) time. However,

(βL + t)2 ≤ 2β2L2 + 2t2

≤ 1

2

( ε

2n

)2/k 2nx

mp2 − 2x
· L +

n
3
√

2nε2

m2(log n)4

≤ (1 + o(1))
3
√

nε2x

mp2
· L +

n 3
√

2

m

= o(1) (xL + L) = o(kL log L),

so the entire algorithm takes

(1 + o(1))kL log L =
(2 + o(1))Cnkx log L

mp2 − 2x

=

(2 + o(1))k

(

√

1
k log(n/ε) +

√

log(t/ε)

)2

Cn log L

mp2

=
(2 + o(1))

(

√

log(n/ε) +
√

3 log(t/ε)
)2

Cn log
n log(n/ε)

mp2

mp2

time.

Essentially, this algorithm trades increased complexity in the process of recon-

structing X for shorter FFT lengths pi; by performing more processing of the vectors

C(i), it extracts more information, thereby reducing the necessary signal-to-noise ra-

tio. As we will see in the next section, there is yet more information which can be

extracted.
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1.5 A Bayesian reformulation

Bayesian analysis combines a “prior distribution” (the distribution expected in the

absence of observations) of a set of parameters with the probability that the obser-

vations which were made would have been made given each possible value of said

parameters, to obtain a “posterior distribution”, which indicates the likelihood of the

parameters having any given value. Of particular recent interest, Bayesian analysis

has been used to filter electronic mail, by decomposing messages into small pieces

(usually words) and using past history to estimate the probability of each piece ap-

pearing in spam or non-spam messages [21].

It seems reasonable to consider this approach for filtering “good offsets” (those

in X) from “bad offsets” (the rest). We have a well-defined prior distribution — we

know that out of {0, 1, . . . n−m} there are t values in X and n−m−t+1 values not in

X — and we are essentially making k observations about how well the strings match

at each offset. Subject to the (false) assumptions that the sum of Bernoulli trials is

exactly normal, and that values j 6∈ X never fall into the same class (modulo pi) as

any values k ∈ X, we would have (noting that (C
(i)
j + σpi(n,m, j))/2 is distributed

as the sum of σpi(n,m, j) Bernoulli trials)

P (C
(i)
j = qσpi(n,m, j) + x|j 6∈ X) ≈ e

−x2

2σpi (n,m,j)

√

πσpi(n,m, j)/2
dx

P (C
(i)
j = qσpi(n,m, j) + x|j ∈ X) ≈ e

−(x−pm)2

2σpi (n,m,j)

√

πσpi(n,m, j)/2
dx

and thus, to a first approximation:

P (j ∈ X|C(1)
j . . . C

(k)
j )

P (j 6∈ X|C(1)
j . . . C

(k)
j )

=
t

n − m − t + 1

∏

i

e

−

„

C
(i)
j −pm

«2

2σpi (n,m,j)

e

−

„

C
(i)
j

«2

2σpi (n,m,j)

≈ t

n − m − t
exp



2mp
∑

i





C
(i)
j − mp

2

σpi(n,m, j)








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where j is reduced modulo pi as appropriate. This hints at a O(kn) algorithm, by

computing k, pi, C
(i) as in Algorithm 1.2, computing the sum

∑

i

C
(i)
j − mp/2

σpi(n,m, j)

for all j and finding the t largest values.

As noted, however, this fails both theoretically (the distribution is close to, but

not exactly, normal), and in practice: Offsets j 6∈ X will have their “scores” pulled

upwards by the proximity (in terms of being congruent modulo primes in P ) of el-

ements of X. In particular, if X = {r, 2r . . . (t − 1)r, xt}, and r is one of the pi

randomly chosen, then the sum above will have larger values at j ∈ rZ − X than

it has at j = xt; while this is not a problem for random sets X, this (and similar

constructions) makes it impossible to sufficiently bound the probability of error for

arbitrary X.

This problem can be avoided, however, by filtering the vectors C
(i)
j somewhat; if

we take D
(i)
j = max(C

(i)
j , δ), for some appropriate δ, and consider the sums of D

(i)
j

instead of C
(i)
j , then we can guarantee a small probability of error regardless of X.

Furthermore, it is not necessary to compute the sum for all j; rather, since we are

only interested in the largest t values, we can start by considering the largest elements

of each vector D(i) and stop once it is clear that the remaining sums will be less than

all of the t largest values found so far.

Algorithm 1.3. Let S, T, Σ, n,m, p, q, t, and ε be given as specified in the problem

description above. Then:

1. Set

δ =
tmp2 log n

n

k =

⌈

log(nt/ε)

log(1/4δ)

⌉

L =
−8n log

(

2k
√

ε/nt −
√

δ
)

mp2 + 8 log
(

2k
√

ε/nt −
√

δ
) .
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2. Compute P, pi, φi, A
(i)
j , B

(i)
j and C(i) as in Algorithm 1.1, and σpi(n,m, j) as

defined in the proof of Theorem 1.2.

3. Compute the vectors D(i) such that

exp (−D
(i)
j ) =

√
δ + exp





−mp(C
(i)
j − mp/2)

2σpi(n,m, j)



.

4. Using a priority queue, enumerate and output the t values of j for which
∑

i D
(i)
j

takes the largest values and 0 ≤ j < n.12

Theorem 1.6. Provided that
√

n < L < n, the output of Algorithm 1.3 will be the

elements of X with probability at least 1 − ε. If n2 > Lk, the algorithm operates in

asymptotic order

4Cn log(nt/ε) log
n log(nt/ε)

mp2

mp2

time, where C is a constant such that a length-L cyclic correlation can be computed

in CL log L time.

Proof. We note that since step 4 finds the values 0 ≤ j < n such that
∑

i D
(i)
j takes

on the largest values, it suffices to prove that the sum attains larger values at the t

values j ∈ X than at any of the n − t values j 6∈ X.

Using the fact that, for x a sum of n Bernoulli trials,

E

(

exp

(

α(x − E(x))

n

))

≤ exp

(

α2

8n

)

,

we note that for j ∈ X,

E(exp(−D
(i)
j )) =

√
δ + E



exp





−mp(C
(i)
j − mp/2)

2σpi(n,m, j)









≤
√

δ + exp

( −m2p2

4σpi(n,m, j)

)

· exp

(

(mp)2

8σpi(n,m, j)

)

=
√

δ + exp

( −m2p2

8σpi(n,m, j)

)

≤
√

δ + exp

( −mp2pi

8(n + pi)

)

12This algorithm is slightly non-trivial but can found in many places, e.g., Knuth[31].
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Similarly, for 0 ≤ j′ < n, j′ 6∈ X, noting that P (j′ ∈ X mod pi) < δ, we have

E(exp(D
(i)
j′

)) < δ · E(exp(D
(i)
j′

)|x ∈ X mod pi) + E(exp(D
(i)
j′

)|x 6∈ X mod pi)

< δ ·
√

δ−1 + exp

( −m2p2

4σpi(n,m, j′)

)

· exp

(

(mp)2

8σpi(n,m, j′)

)

≤
√

δ + exp

( −mp2pi

8(n + pi)

)

Consequently, observing that since since D
(i)
j and D

(i)
j′

(for j 6= j′) derive from

the sums of distinct subsets of the elements of the match count vector V , they will

be independent, we have for all pairs j ∈ X, j ′ 6∈ X,

P (
∑

i

D
(i)
j ≤

∑

i

D
(i)
j′

) ≤ E(exp(
∑

i

D
(i)
j′

− D
(i)
j ))

=
∏

i

E(exp(D
(i)
j′

))E(exp(−D
(i)
j ))

≤
∏

i

(√
δ + exp

( −mp2pi

8(n + pi)

))2

≤
(√

δ + exp

( −mp2L

8(n + L)

))2k

=
ε

nt

and, noting that there are fewer than nt such pairs (j, j ′), we obtain the required

probability of error.

To establish the time bound, we note that step 4 can be performed using a heap

in time equal to log L times the number of positions j which must be considered; this

number is easily bounded by L2n−2/k in the same manner as the error bound.

It is important to note that this filtering relies upon knowledge of p; if the value

used is too low, useful “signal” will be filtered away, while if the value used is too

high, the probability of obtaining incorrect results will be higher than desired. In

some cases, it may be desirable to use a somewhat less powerful but more robust

approach, by computing the ranks r
(i)
j of the elements C

(i)
j within their respective

C(i), and considering the sum of
√

log pi − log r
(i)
j ; alternatively, one may choose to

entirely ignore the danger of an increased error rate for worst-case inputs, and work

with the C
(i)
j directly.
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1.6 Final notes

In order to avoid over-complicating the exposition above, we have omitted some

details which, while worthy of note, do not effect the main arguments. We present

them here, without proof:

1. Since in the above algorithms we always have m < L ≤ {pi}, it is not necessary

to perform the general correlation of two length-L vectors to compute the vectors

C(i); rather, it is necessary to perform a length-L correlation of a length-L vector

with a length-m vector. This reduces the factor of log L to a factor of log m,

reducing the algorithms presented to run in order

n log(nt/ε) log m

mp2

time.

2. In some cases, it may be preferable to compute the number of matching char-

acters directly, rather than applying mappings φi onto {−1, 1}. This increases

the cost of computing the correlations by a factor of |Σ|, but reduces the nec-

essary correlation length L by a factor of |Σ| /4; more significantly, however, it

allows for general goodness-of-match functions δ to be used, which is important

in some contexts.

3. As in the paper by Atallah et al. [3], it is possible to use mappings φ : Σ → {ωi}
instead of mapping onto {−1, 1}. This has the effect of reducing the necessary

correlation length L by a factor of two; but it also makes it necessary to work

in C instead of R, which in most cases will result in the correlation taking (at

least) twice as long.

4. We have required that, subject to the requirement of approximately matching

in positions given by the set X, the two strings S, T are random and have

characters taken uniformly from Σ. In some contexts, this is not reasonable: In

particular, DNA sequences often have short strings which repeat a large number

of times, while computer binaries often have large regions containing mostly zero
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bytes. To resolve these problems, we can borrow a technique which is often used

in the field of DNA sequence alignment: If a sequence is repeated several times,

the repeating characters can be replaced by “ignore” symbols which φ maps

to 0. Alternatively, and somewhat better in the context of computer binaries,

commonly-occurring characters (such as the “0” byte) can be partially masked,

by weighting them (or rather, the mapping φ) by some factor depending upon

the character frequency. In practice, we find that weighting by the inverse

square root of character frequency seems to produce good results13.

5. If the values n,m, p, t, ε are fixed in advance, the string S can be indexed simply

by precomputing (or choosing) L, P, pi, φi, A
(i). If, however, some of these pa-

rameters are unknown, values P, pi, φi, A
(i) may be precomputed corresponding

to values Li = 2−in for various i, taking O(n log n) time and producing an

index of size O(n); once the necessary parameters are known, the “correct”

value of L can be computed and the portion of the index corresponding to the

smallest Li ≥ L can be used (at the expense of a slight time cost due to the

larger than necessary vector lengths). Indeed, if implementation details make

this desirable, specific convenient pi can be chosen for the index — with the

caveat that the most convenient values 2i are likely poor choices if the source

data is computer-generated.

6. In the last algorithm above, the values σpi(n,m, j) were used. For the val-

ues of n,m,L which can occur in the above algorithms, however, we have

σpi(n,m, j) ≈ nm/pi, and computations involving σpi(n,m, j) can be replaced

– at a very slight cost in accuracy – by corresponding computations involving

nm/pi.

7. The restrictions placed upon the input parameters, and the values assigned to L,

have naturally erred on the side of caution, and practical implementations will

13Another tempting possibility is to deflate the input strings, and weight each individual character
according to the inverse of the length of the string represented by the symbol in which it is found;
by virtue of deflate’s effectiveness as a compression mechanism, the weights so obtained would most
likely be a good estimate of the “information” transmitted by each character, and thus of the
importance of it correctly matching.
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generally be able to reduce the o(1) term by adjusting the choice of parameters.

8. Given that, in practice, most input strings will be non-random, it may be useful

to apply several different mappings φ for each prime pi and add their result-

ing vectors C(i) together, since this will reduce the probability of choosing an

“unlucky” φ.

9. In practical applications, the critical element for determining whether these al-

gorithms can be used is the distribution of the values C
(i)
j . For random inputs

(as constructed earlier), these values will be approximately normally distributed

apart from outliers corresponding to values in X (these outliers might not nec-

essarily appear to lie outside of the obvious distribution); however random or

non-random the process is which produces the inputs used, if the values C
(i)
j are

distributed in an approximately normal manner then the algorithms described

here are likely to succeed (although it may be necessary to make L larger by

a multiplicative constant in order to compensate for non-random behaviour of

the inputs).

With these final notes, we have a practical algorithm for indexed matching with

mismatches which operates in sublinear time for constant error rates. In the following

chapters, we shall turn our attention to two applications of this algorithm, first in the

delta compression of compiled programs, and second in the remote synchronization

of files.
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Chapter 2

Delta Compression of Executable

Code

2.1 Introduction

Historically, delta compression — that is, generating “patches” encoding the differ-

ence between two files1 — has been used most often in the context of program source

code. Revision control systems typically keep the most recent version of a file along

with reverse deltas, in order that older versions can be reconstructed [55], while up-

dates are normally distributed as forward deltas — better known as patches. These

source code patches have advantages beyond that of mere delta compression; they are

also human-readable and (usually) commutative and reversible, which makes them

especially useful for collaborative software development.

Given that executable files are typically not human-readable, and that people

rarely have cause to examine an old version of an executable file, delta compression of

executable code is only used for one major purpose: software updating. In the past few

years, however, this purpose has become increasingly important: As software security

flaws are discovered and exploited increasingly rapidly — often by autonomous worms

— it becomes vitally important that end-user systems be kept up to date. In this

context, delta compression of software updates has two major advantages; not only

can it dramatically reduce transmission costs, but it allows software to be updated

more quickly, reducing both the potential for security flaws to be exploited before the

affected software can be updated, and increasing the likelihood that patches will be

1Or, equivalently, compressing a file by using a second “reference” file.
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applied promptly: With security updates often in the range of 5–10 MB, and many

users still connecting to the Internet via modems running at 33.6 kbps,2 it can easily

take half an hour for uncompressed patches to be downloaded, exceeding the patience

of most users.

Delta compression of text files has usually been performed with two basic opera-

tions: copying and insertion3. Typically, lines common to the old and new versions of

a file will be copied, while lines which only appear in the new file will be recorded as

part of the patch. This works well with text files because changes tend to be localized;

a few lines might change from one version to the next, but most of the lines would

remain unchanged. Unfortunately, this method fails when applied to executable files:

Unlike the situation with text files, when executable files change there are usually

differences spread throughout; as a result, only small regions of the old and new ver-

sions can be matched together, making it necessary for a large proportion of the new

file to be stored in the patch.

One solution to this problem relies upon knowledge of the structure of executable

files, and the machine code, of the files’ target platform. By disassembling the old and

new executable files and comparing the resulting code, it is possible to generate very

compact patches [6]; however, since this approach requires a detailed understanding

of the target platform, it is both highly complex and completely non-portable.

Throughout this chapter, we shall refer to the “new” and “old” files; these are

also sometimes known as the “current” and “reference” files.

2.2 Differences of executable code

To construct compressed deltas of executable files in a portable manner, it is im-

portant to consider how executable files change at the byte level from one version

to another. We group these changes into three categories: zeroth-order changes,

first-order changes, and second-order changes.

2Most users have modems capable of running at 56 kbps, but poor quality wiring tends to limit
potential speeds.

3Some programs are in fact even more restricted, using only deletion and insertion; in the context
of text files, where blocks of text normally do not change order, this is equivalent.
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Zeroth-order changes are those which are innate to the compilation process —

changes which take place even when the same source code is compiled twice. While in

most cases there are no such changes, some UNIX programs contain human-readable

time, date, and host stamps [44], and Microsoft’s Portable Executable format [37]

contains a timestamp in the file header. These zeroth-order changes can be prob-

lematic for some applications — they can result in files being spuriously identified

as “modified”, causing unnecessary patches to be distributed or setting off intrusion-

detection systems — but since they are normally very small relative to the files as a

whole, they have little impact on patch generation.

First-order changes are those which can be directly attributed to changes in source

code. While there is generally some expansion when compared to the source code

delta — when optimizing compilers reorder instructions, they will inevitably inter-

leave modified instructions with unmodified instructions, and the precise allocation of

processor registers may be modified over an even larger region — these changes will

be localized and of an extent proportional to that of the source code changes. Since

the bytes of executable code affected by first-order changes belong to instructions

which are essentially new, they are best compressed by well-understood (non-delta)

compression algorithms.

Second-order changes are those which are induced indirectly by first-order changes.

Every time bytes of code are added or removed, the absolute addresses of everything

thereafter, and any relative addresses which extend across the modified region, are

changed. As a result, a small first-order change will result in addresses being modified

throughout an executable file. This explosion of differences, where a single line of

modified source code can cause up to 5–10% of the bytes of executable code in a file

to be modified, is what causes conventional delta compression algorithms to perform

so poorly on executable files. As a result, efficient delta compression of executable

code can be largely considered to be the problem of locating and compactly encoding

these second-order changes.
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2.3 Matching

Since first-order and second-order changes are fundamentally different in nature, it

is important to distinguish between them, so that they can be handled differently.

The natural approach to this task is to attempt to match portions of the new file

against the old file; differences between closely matched regions should be treated as

second-order differences (i.e., as differences between regions of binary code generated

from the same source code), while regions of the new file which cannot be matched

to any part of the old file should be treated as first-order differences4.

In conventional delta compression methods, this matching is required to be exact

— two strings of bytes match if and only if they are equal. Two commonly used

methods used for this matching are suffix trees and hashing; depending upon the ap-

plication, these are sometimes limited to fixed windows, in order to minimize memory

usage.

For matching in executable files, however, exact matching is inappropriate; in-

stead, we want to find code which matches apart from certain mutable elements (such

as addresses and possibly register allocations). In platform-specific tools (e.g., [6, 43]),

this is easy: The code can be disassembled, the mutable elements stripped out, and

the remaining instruction listings compared. This problem becomes similarly easy

given access to the source code and a (possibly modified) copy of the compiler used:

By having the compiler record the lines of source code responsible for each region of

binary code in the two files, the problem is reduced to one of comparing the source

code for the two files. If either source code or platform-specific knowledge is un-

available, however, the problem becomes one of matching with mismatches — we

wish to find regions from the two files which match in their “opcode” bytes, but not

necessarily in the bytes encoding memory addresses or register allocations.

We note that this problem is related to the problem of DNA sequence alignment;

in both problems, two strings are given from which approximately matched substrings

4Providing that the encodings used for the first-order and second-order differences are reasonably
“stable” (i.e., not overly influenced by the presence of a small number of bytes which do not follow
the same model as the majority), it not necessary that this matching be exactly correct.
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must be found. There is, however, a quantitative difference: In DNA sequence align-

ment, the percentage of matched base pairs is usually quite high (often 90% or more)

while the length of matched regions is quite low (tens of base pairs) due to mutations

which add or delete characters; when matching executable code, in contrast, the per-

centage of matched characters can be lower (often down to 50%) but the matched

regions tend to be longer (hundreds or thousands of characters).

A trivial quadratic algorithm can be obtained by dynamic programming (or equiv-

alently, by finding the shortest path through a directed graph); each byte within the

new file can be aligned against any position in the old file, or left unmatched. Scores

are computed based on the number of matched bytes (bytes in the new file which

are equal to those against which they are aligned), the number of mismatched bytes

(those which are not equal to the bytes against which they are matched), the number

of unmatched bytes, and the number of realignments (positions where two successive

bytes in the new file are not aligned against successive bytes in the old file). Unfor-

tunately, such a quadratic algorithm is far too slow to be useful in practice5. This

algorithm is closely related to the well-known Needleman-Wunsch algorithm for DNA

sequence alignment [40] and its derivatives.

2.4 Block alignment

Recognizing that small changes in source code tend to leave large portions of the

resulting binaries unchanged apart from internal addresses, we apply the algorithm

for matching with mismatches from Chapter 1. Taking the old file S, we construct an

index S̄ with k = 2 and L = 4
√

n log n in time linear in the file size6. Next, we divide

the new file T into blocks of length
√

n log n, and using the index S̄ locate where in

the old file each such block matches best.

If we are lucky, every sufficiently large region which matches (with mismatches)

between the two files will contain at least one block with the correct alignment; but

5In delta compression of text files, O(n2) algorithms are not uncommon; but in such cases, n is
usually on the order of 103 lines, in contrast to the 105–107 bytes typical of binary files.

6The constant 4 is to some extent arbitrary; the FFT and block lengths can be adjusted de-
pending upon the amount of time available, the importance of obtaining correct matchings, and the
importance of identifying small matched blocks.
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there will almost certainly be blocks which were aligned in incorrect places, and the

boundaries between adjacent blocks with different alignment offsets will usually not

correspond to the boundaries between the underlying regions.

Consequently, we now “tweak” this alignment: We scan, first forwards, then back-

wards, through the new file, considering in turn each of the boundaries between

aligned blocks. Based on the contents of the new and old files, we move these bound-

aries in order to reduce the number of mismatches; where a range of possible bound-

aries would result in the same number of mismatches, we place the boundary on a

multiple of the largest power-of-two possible7. We also remove blocks which, as a

result of this process, shrink below some threshold; this is done because such blocks

would be too small to have been found by our algorithm for matching with mis-

matches, so we have no reason to think that they are correctly aligned.

At this point, most or all large regions which match (with mismatches, but without

indels) between the two files should have been found. We now make a final pass

through the list of blocks, counting the number of matching characters, and remove

any blocks or parts of blocks which fail to match in at least 50% of their characters,

on the assumption that if the best matching we can find for a region is that poor,

then it probably doesn’t match at all, but is instead a completely new region (i.e., a

first-order change).

Each application of our algorithm for matching with mismatches takes O(L log L)

= O(
√

n log n log n) time, and we apply the algorithm m/
√

n log n times, for an oper-

ation count of O(m log n). The other stages (the initial indexing, and the “tweaking”)

run in O(n + m) time, for a total operation count of O(m log n + n).

In practice, this method is quite fast — especially on processors with vector8

floating-point arithmetic9. The majority of the time consumed is spent performing

single-precision FFTs, and since these are among the first complex operations which

7Due to issues involving instruction prefetching and code caches, compilers usually attempt to
align blocks of code on 8-, 16-, or 32-byte boundaries.

8Or, as it is more popularly known these days, SIMD.
9This includes all of the most widely used processor architectures: Intel processors have “SSE”,

PowerPC processors have “Altivec”, and AMD processors have “3DNow”, all of which support
simultaneous operations on four single-precision floating-point values.
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processor (and library) vendors optimize, block alignment tends to perform even bet-

ter than a theoretical operation count might suggest. Block alignment also performs

quite well from the perspective of memory usage: The index, and the resulting align-

ment, fit within O(n1/2+ε) bytes of memory. For pairs of binaries which are quite

similar, block alignment also tends to result in very small patches.

2.5 Local alignment

While block alignment is very effective when applied to two binaries with very small

source code differences (e.g., security updates), it tends to perform poorly in the

presence of more extensive changes. Because it starts by aligning blocks of length

O(
√

n log n) (typically a few thousand bytes), it is incapable of detecting and aligning

smaller regions, even if those regions match extremely well.

For these, we return to the methods used for delta compression of binary data

files: We search for regions from the two files which match perfectly. First we suffix

sort the string S#T#, where the character ‘#’ is usually called the “EOF” character

and is sorted before any characters in Σ; this can be done in O((n + m) log(n + m))

time [34], or even in O(n + m) time [26, 29, 32] with a significantly larger implicit

constant. We then compute the longest common prefix vector (in linear time [27]),

and then scan through the list of sorted suffices in both directions in order to obtain,

for each position in T , the offset within S from which the largest number of matching

characters can be found, and the length of this matching substring10 (also in linear

time).

Given these locally-optimal alignments, we can generate a set of alignments for

the entire file as follows: Starting at the beginning of the file, we set the “current”

alignment to be the offset (between the new and old files) where the string start-

ing at byte zero matches the furthest, and allow the “next” alignment to iterate

forwards through our array of locally optimal alignments. Any time that the “cur-

rent” alignment, extended forward to the end of the matching block associated with

10An alternative, and more commonly used approach, involves hashing fixed-length blocks [35, 57],
which is faster but often fails to find the longest matching substrings. Suffix trees are also commonly
used, but in light of recent algorithmic improvements have no advantages over suffix sorting.
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the “next” alignment, contains enough mismatches (typically 8 mismatches is a rea-

sonable threshold), the “current” alignment is output and replaced by the “next”

alignment. This produces a list of non-overlapping alignments; starting from these

“seeds”, we now extend the alignments forwards and backwards to the extent that

they continue to match at least 50% of characters.

In practice, the time taken is dominated by the construction of the suffix array,

and reasonably good results are produced for pairs of executables produced from

significantly different source code; but for binaries with only very small differences,

the performance is limited by the inability of locally optimal alignments to reflect large

blocks which match with significant numbers of mismatches11. This local alignment

is also slower than block alignment, and consumes O(
√

n) times as much memory.

2.6 Combining local and block alignment

In order to gain the advantages of both block alignment and local alignment, we

return to dynamic programming, but avoid the O(nm) running time which would

result from allowing arbitrarily alignments by first pruning the graph using block and

local alignment.

The block alignment works as described in section 2.4, with the exception that

the final filtering stage is removed: The old file is indexed, the new file is split into

blocks which are individually aligned against the old file, and the boundaries between

blocks are moved (or removed entirely) in order to maximize the number of matching

characters.

The local alignment proceeds up to the point of finding the longest matching sub-

string starting from each position in the new file: The two files are suffix sorted to-

gether, the longest common prefix vector is computed, and the suffix array is scanned

forwards and backwards.

We now iteratively construct a pruned graph, and find the shortest path through

it, as follows: Instead of including nm vertices corresponding to the n positions in

11One case where this occurs is in tables of addresses, where there may be over a thousand bytes
which mismatch in one or two out of every four bytes (the low order byte(s) of each 32-bit address).
Since the largest perfect matches within such a block are only three bytes long, the block will remain
entirely undetected by a method which relies only upon locally optimal alignments.
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the old file against which each of the m bytes in the new file could be aligned, we

include only 64m. The 64 vertices associated with each position pos in the new

file comprise: 31 computed from the offsets ([position in old file] minus [position

in new file]) associated with the longest matching substrings starting at positions

immediately following pos; 31 from offsets which have the shortest distances from

the origin to position pos− 1; one corresponding to the matching predicted by block

alignment; and one which is the “not matched” position12.

At byte zero in the new file, all the vertices are initialized to distance zero; sub-

sequently, the distance from (x, y) to (x + 1, y + 1) is 0 if the corresponding bytes

from the old and new files match, and 2 if they mismatch; the distance from the

“not matched” position for pos− 1 to the “not matched” position for pos is 1; and a

distance of 20 is assigned to the remaining paths from one step to the next13.

Once the last byte of the new file is reached, we find the vertex from that final

step with the minimum distance, and follow its path backwards; in so doing, we have

constructed an alignment of the new file against the old file.

2.7 Delta encoding

Once the old and new files have been matched against each other, we turn to encoding

their differences. The matching is easily encoded by listing, in order of the new file,

the offsets and sizes of blocks which are copied from the old file and the sizes of new

blocks. We encode these integers in little-endian, base-128 format, and use the most

significant bit of each byte to identify the most significant byte14; we refer to the

resulting sequence of bytes as the “control string”.

Those regions of the new file which are not matched against any part of the old

file (and which, therefore, are believed to be zeroth-order and first-order differences)

are extracted and concatenated; this forms the “extra string”.

12Like many other numbers in this chapter, the values 64 and 31 are chosen simply because they
work well without being excessively slow.

13These values are obtained by experimental observation, and will not be ideal for all input data.
14This commonly used encoding allows for small integers to be expressed compactly, while not

imposing any upper limit on the integers to be encoded.
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What remains is the problem of encoding the second-order changes identified. As

noted before, platform-specific information can make this task much easier; one ap-

proach [43] involving complete disassembly of the executables into assembly language

removes these second-order differences completely, since upon re-assembly, the new

addresses are used. Another approach uses extra data emitted by the compiler to

zero all such internal addresses and store them separately [53]; this emasculated file

is then delta compressed using well understood mechanisms [25, 52, 56].

In order to efficiently encode the second-order changes in a näıve manner, i.e.,

without platform-specific knowledge, the original source code, or a modified compiler,

we recall three points: First, these changes are primarily the result of addresses

(relative and absolute) being modified. Second, references to the same, or nearby,

data or code targets will normally be modified in the same manner (code and data

tend to be moved around in blocks). Third, data and code targets which are referenced

close together have a good chance of being located together (locality of reference).

Together, these points suggest that when matched blocks of code from the new and

old files are compared, not only will most of the differences occur in addresses, but

the numerical differences between the addresses in the new and old files will take on

certain values far more commonly than others — in short, those differences will be

highly compressible.

Now, without being able to disassemble the executable code into its constituent

instructions, knowing that the differences represent a small number of commonly-

occurring differences is immaterial in itself; but since computer binaries invariably

encode addresses as binary integers, we can obtain a very compressible difference

string by simply taking the bytewise differences between corresponding bytes of the

new and old files.

The presence of multi-byte integers diminishes the potential compression some-

what, however, since a bytewise subtraction of 1200 - 11FC yields 0104, while 1210

- 120C yields 0004; to avoid this, we turn to multi-precision arithmetic subtrac-

tion, and write the difference in balanced notation (i.e., with digits in the range

[-128 . . . 127]); thus 1200 - 11FC = 1210 - 120C = (00)(04), while 1280 - 11C8

= 12B8 - 1200 = (01)(-48). Noting that this depends upon machine byte order,
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we compute not one “difference” between each pair of matched regions, but instead

four: First, the bytewise differences, which perform reasonably well regardless of

machine byte order; second, the Lilliputian multi-precision difference; third, the Ble-

fuscuan multi-precision difference; and fourth, a “correction map” simply containing

the values from the new file in each place that the new and old files differ15. Each

of these four constitutes a “difference string”; we will decide later which one shall be

used.

Now, we note that a difference string is in fact a union of two entirely different

data sets. It specifies where in the executable file addresses have been modified, and

it also specifies by what amount they have been modified. Just as combining similar

data before compression tends to improve compression ratios, combining dissimilar

data before compression tends to reduce compression ratios16, so we split this string

into two parts: First, a “difference map”, which is of the same length but contains

bytes equal to zero or one, depending upon whether the corresponding byte is nonzero,

and second, a “non-zero difference string”, containing all the non-zero bytes without

the intervening zeroes17. In this manner, we separate locally repetitive data (as

noted before, in any region, the differences tend to take a small number of values

repeatedly) from globally structured data (as a result of instruction encoding lengths

and the positions within instructions where addresses are encoded, the locations where

corrections must be made tend to form distinctive, and compressible, patterns).

The control string, non-zero difference string, and extra string are compressed

independently, either with zlib [2] (a Lempel-Ziv compressor) or libbzip2 [51] (a

block sorting compressor); in general, the control and non-zero difference strings

compress most efficiently with zlib, since they contain local repetition, while the

extra string compresses best with libbzip2, since executable code contains significant

structure, which a block sorting compressor can utilize.

15We have yet to find any files (not specifically constructed for this purpose) for which the “cor-
rection map” results in smaller patch sizes; but it seems a natural item to include.

16Birds of a feather compress better together.
17The “correction map” is handled slightly differently: It is transformed into a difference map

marking all the positions where the two files differ, and a non-zero difference string containing the
values from the new file at all these locations.
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The difference map is compressed in a different manner: Recognizing that it

contains entirely structural redundancies, we first take the Burrows-Wheeler trans-

form [10] of the data, which serves to cluster related data together — in this case,

causing the 1s to cluster together; next we enumerate the positions of the 1s, thus

forming a strictly increasing sequence; finally, we recursively divide this sequence in

half, and encode the value at the midpoint using arithmetic compression.

We now construct the patch file in five parts. The first part is a header containing

a “magic” string; a byte specifying the differencing mode used (correction, bytewise,

Lilliputian, or Blefuscuan) and the compression method used (none, zlib, or libbzip2)

for each of the control, non-zero difference, and extra strings; the sizes of the new and

old files; the MD5 hashes [50] of the new and old files18; the sizes of the compressed

and uncompressed control, non-zero difference, and extra strings; the size of the

compressed difference map; and the position of the EOF character after the Burrows-

Wheeler transform has been performed. The other four parts, in order, are the

compressed control string, the compressed non-zero difference string, the compressed

difference map, and the compressed extra string.

We have implemented this method in a tool named ‘bsdiff 6’19

2.8 Performance

In order to evaluate the delta compression performance of bsdiff 6 when generating

patches between two different versions of an executable, we use 15 pairs of DEC

UNIX Alpha binaries from the exposition of Exediff, the working of which is specific

to that platform [6] (five pairs from that paper are not included here; four of these

were artificial, while one pair was unavailable). In Table 2.1 we list for each of these

pairs the original size of the new version of the file, both uncompressed and bzip2-

18It has recently been shown [58] that it is quite easy to find collisions in the MD5 hash function,
but this is irrelevant to the purpose for which we are using it: We include these hashes simply as a
safeguard against error, (whether human, in the form of attempting to apply a patch to the wrong
file, or computer, in the form of incorrectly applying the patch).

19bsdiff versions 0.8 through 4.2 were previously published by the author, and ranged from the
traditional copy-and-insert to a method similar to what we have described here, but using only local
alignment, and using a more primitive delta encoding. Version 5 never existed except as a descriptor
for experimental work which later became version 6.
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Program Original bzip2 Xdelta Vcdiff zdelta .RTPatch Exediff bsdiff 6
agrep: 4.0 → 4.1 262144 114338 14631 10886 7162 5910 3531 4265
glimpse: 4.0 → 4.1 524288 222548 109252 93935 64608 37951 23200 24642
glimpseindex: 4.0 → 4.1 442368 193883 98632 80325 51723 25764 18473 16240
wgconvert: 4.0 → 4.1 368640 157536 75230 60658 38544 20712 15688 12432
agrep: 3.6 → 4.0 262144 114502 80346 79962 63282 58124 41554 44327
glimpse: 3.6 → 4.0 524288 222178 177434 189926 147594 140549 106154 109680
glimpseindex: 3.6 → 4.0 442368 193892 144927 144746 115980 105510 80799 80447
netscape: 3.01 → 3.04 6250496 2396661 1100430 1013581 2519221 351759 284608 212032
gimp: 0.99.19 → 1.00.00 1646592 642725 463878 462588 345385 301879 185962 219684
iconx: 9.1 → 9.3 548864 233056 139409 119510 80017 51195 38121 31632
gcc: 2.8.0 → 2.8.1 2899968 708301 549250 422288 274652 140284 76072 88022
rcc (lcc): 4.0 → 4.1 811008 221826 889 667 373 265 303 187
apache: 1.3.0 → 1.3.1 679936 180708 111421 103611 69895 48033 42038 25927
apache: 1.2.4 → 1.3.0 671744 179369 191920 242292 200511 216867 231357 163249
rcc (lcc): 3.2 → 3.6 434176 155090 84456 76227 52324 34098 22019 22691
Average Compression 100% 36.22% 20.83% 19.66% 19.52% 10.88% 8.41% 7.67%

Table 2.1: Sizes of updates produced by bzip2, Xdelta, Vcdiff, zdelta, .RTPatch, Exediff, and bsdiff 6
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compressed, along with the size of patches produced by three freely available binary

patch tools (Xdelta [35], Vcdiff [33], and zdelta [56]), a widely used commercial tool

(.RTPatch [45]), Exediff, and bsdiff 620. In the interest of a fair comparison, and after

communication with one of the authors of that tool (Robert Muth), we re-compressed

Exediff’s patches with bzip2 rather than gzip where this resulted in a reduction in

patch size. The average compression factor shown is computed as the arithmetic

mean of the individual compression factors [patch size]/[original size], weighted by

the square root of the file size, in order to avoid over-weighting either the largest

or the smallest files used21. (This can be seen as a compromise between using a

constant weight and a weight linear in the file size; it might also be possible to make

an argument that this weighting is appropriate by considering the sizes of patches as

being produced by random walks, but no such considerations were in fact made in

choosing this weighting.)

There is a very clear trend; from the largest (worst) patches to the smallest (best)

patches, the order is usually bzip2, Xdelta, Vcdiff, zdelta, .RTPatch, {Exediff, bsdiff

6}, with Exediff and bsdiff 6 being optimal in 7 and 8 cases respectively; overall bsdiff 6

performs slightly better than Exediff. There are two notable exceptions to this trend:

First, zdelta performs exceptionally poorly on the netscape 3.01 → 3.04 upgrade; we

believe that this results from the large file size (6.5 MB) exceeding the capabilities of

zdelta and causing it to effectively revert to regular (non-delta) compression22.

The second exception is the apache 1.2.4 → 1.3.0 upgrade, where bsdiff 6 was

the only delta compressor to produce a smaller “patch” than bzip2. Examining the

source code for these two versions of Apache, it is not surprising that there is little

similarity for the various delta compressors to grasp: The two versions share less than

half of their source code. This is reflected in the patch produced by bsdiff 6: Out of

20It would have been useful to compare the performance of other platform-specific tools, but since
those tools are both specific to a different platform, and commercially licensed, this was not possible.

21Different authors express the performance of compression algorithms in a variety of manners;
what we refer to as a “compression factor of 10%”, many authors would refer to as a “compression
ratio of 10x”, while yet others would refer to “90% compression” (presumably on the hypothesis
that 100% compression would eliminate the file entirely).

22Note that zdelta uses the deflate algorithm, which is less effective at compressing executable
code than bzip2.
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the 671744 bytes in apache 1.3.0, only 263509 were delta compressed; the remaining

408235 were compressed with bzip2 and stored as “extra” bytes.

More important than the above consideration of upgrading between versions (“fea-

ture updates”), however, is security updates. These are fundamentally different, in

that the source code modifications are typically extremely small — of the first 13

security advisories issued for the FreeBSD operating system in 2004, 5 were corrected

by patches of less than ten lines, and only one exceeded 50 lines in length [19, 20]. We

take the i386 build of FreeBSD 4.7-RELEASE and a snapshot of the RELENG 4 7

security branch as a corpus for comparison here. In Table 2.2 we show the perfor-

mance of Xdelta, Vcdiff, zdelta, .RTPatch, bsdiff 6, and bsdiff 6 using block alignment

only, grouped according to the file type being patched (Exediff is not considered here,

because it is exclusive to a different platform). Note that the 3 ‘text’ files (one C

header file and 2 configuration files) all have very small differences; the performance

of the various tools here reflects little more than the overhead in their respective patch

formats.

For the 79 ‘binary’ files, (69 executables, 7 library archives, and 3 shared object

files), the tools perform in the same order as before; in order from the largest to the

smallest patches: Xdelta, Vcdiff, zdelta, .RTPatch, bsdiff 6. We note, however, that

the gap between best and worst performance is much larger for security patches; while

the various tools produced ‘upgrade’ patches averaging from 7.67% to 20.83% of the

original file sizes — a spread of less than a factor of three — the ‘security’ patches

averaged from 1.27% to 9.28% — a difference of more than a factor of seven. This

reflects the greater relative importance of second-order changes in the files; where the

source code changes — and thus the first-order changes in the executable files — are

small, the resulting patch sizes depend almost totally upon the efficiency of encoding

second-order changes.

In light of the vastly reduced memory consumption, it is useful to note the delta

compression performance of bsdiff 6 when operating in “block alignment only” mode:

Given that the patches are on average only 8% larger, this may be a method worth

considering further.
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File type # files Total size bzip2 Xdelta Vcdiff zdelta .RTPatch bsdiff 6

block
alignment
only

Executables (static) 53 15056508 6725178 1779523 1275057 773574 373788 250509 263676
Executables (dynamic) 16 8002788 3399743 1009139 664869 422074 182843 128859 133907
Library archives 7 7600906 1635094 93480 57902 38797 30661 16476 31240
Shared Object 3 1438072 599937 96651 77386 49174 20323 13338 13716
C headers 1 11402 3810 238 66 55 169 126 129
Configuration 2 10183 4407 401 81 62 280 214 313
Total 82 32119859 12368169 2979432 2075361 1283736 608064 409522 442981
Average Compression 100% 38.51% 9.28% 6.46% 4.00% 1.89% 1.27% 1.38%

Table 2.2: Sizes of security patches produced by bzip2, Xdelta, Vcdiff, zdelta, .RTPatch, bsdiff 6, and bsdiff 6 using block
alignment only
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2.9 Conclusions

By considering how executable files change at the byte level from one version to an-

other, and by utilizing the algorithm for matching with mismatches from Chapter 1

and (optionally) suffix sorting, we can generate patches which are equal to or smaller

than those produced by a carefully tuned platform-specific tool. In light of the great

advantages of a näıve approach — greater simplicity, less potential for correctness

and/or security errors, and portability across platforms — we believe this is a very

useful approach to the distribution of software updates in general, and security up-

dates in particular.

Unfortunately, in the context of “open source” software, binary patches have one

critical flaw: If the “old” file is not exactly as expected, it will be impossible to

correctly apply the patch, meaning the the entire “new” file must instead be trans-

mitted23. We will turn to this problem in the next chapter.

23By using checksums or cryptographic hashes, failing to correctly apply a patch can be assumed
to be detected.
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Chapter 3

Universal Delta Compression

3.1 Introduction

As noted at the end of Chapter 2, while delta compression can provide considerable

advantages, it also has a significant limitation: Each delta is generated from a pair of

“new” and “old” files, and any attempt to apply a patch to the wrong “old” file is very

unlikely to result in the correct “new” file being produced. As a consequence, normal

delta compression is entirely unusable for updating files which have been modified

(or in the case of ‘Open Source’ software, compiled) on the destination machine;

it requires that copies of all published binaries be kept (either intact, or as reverse

deltas) in order for future delta compression to be performed1; it can be impractically

slow to build patches if there are a large number of old versions — in the context of

security patches, even adding a couple of hours may be problematic — and finally,

even once all the necessary patches have been generated, it is necessary either that

each system is examined in order that the appropriate patch may be downloaded

(which may be impossible for systems not connected to the Internet, or in other high

security environments2, and is often undesirable even if it is possible), or that several

different patches are distributed in a single package — which would severely diminish

the advantages of delta compression.

1This is a particular concern at present, since delta compression is only starting to become
widely used; many vendors find that they would like to use delta compression, but did not keep
copies of older binaries. While it would be possible to make a gradual transition towards using
delta compression — using deltas whenever possible, and downloading the entire “new” files when
necessary — this isn’t a particularly useful approach, since the majority of security patches usually
affect files which have never been updated before.

2Banking systems, for example.
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In light of these disadvantages, we consider the problem of universal delta com-

pression with respect to a distance function d:

Problem: Let a distance function d be chosen, let a file S be fixed, and let

parameters R (known as the “radius”) and ε (the acceptable probability of

failure) be given. Generate a (possibly randomized) file S ′, with
∣

∣S′∣
∣ < |S|,

such that for any file T with d(S, T ) < R chosen independent of the

randomization used in constructing S ′, S can be computed from {T, S′}
with probability at least 1 − ε.

In short, generate a single patch which can be distributed to everyone, rather than

needing to generate individual patches for each old version of the file being updated.

Note that the probability ε of error arises out of the randomized construction of S ′

— we are not concerned by the possibility that, given S ′, one can construct files T

within the given radius for which the algorithm fails. Some authors refer to this as a

“one-round synchronization protocol” or a “zero-feedback synchronization protocol”;

given that a zero-feedback protocol is hardly a protocol at all, we opine that this falls

more appropriately into the category of delta compression than that of protocols for

file synchronization3.

While there are theoretical solutions to this problem involving colouring hyper-

graphs [41], these require exponential computational time; as such, they are of no

practical value.

Throughout this chapter, we will refer to the “sending machine” and the “receiving

machine”, these being the parties holding the strings S and T respectively.

3.2 Error correcting codes

If the distance function d is the Hamming distance, there is a well known algo-

rithm for this problem [1]: Take some error correcting code C with the property that

3Nevertheless, there is a natural way of converting an algorithm for universal delta compression
into a protocol for file synchronization: One participant computes and transmits deltas S ′ computed
with increasing values of R, and the second participant attempts to apply these patches in turn and
sends a single bit back after each patch to indicate if the most recent patch was sufficient. (We
assume that a checksum can be transmitted in order that the second participant can recognize if S
has been reconstructed correctly.)
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C(x) = x.P (x) for some parity function P , with distance at least 2R+1, and compute

and send the parity block S′ = P (S). At the receiving machine, on receipt of P (S),

form the string T.P (S) and decode according to the error correcting code. Given

that |{i : Si 6= Ti}| ≤ R and the code C has distance at least 2R + 1, T.P (S) will be

decoded to the codeword S.P (S), from which the string S is extracted.

In contexts where the transmission of the parity block is not subject to errors

(as is the case when constructing compressed deltas — we trust patch integrity to

lower level mechanisms), this can be improved slightly if we restrict ourselves to

using cyclic codes: Rather than taking S as the data block of an error correcting

code and transmitting the parity block, we can take S as a codeword with errors,

and compute and transmit S′ = syndrome(S) = S(x) mod g(x), where g(x) is the

generator polynomial for the code. Since S −S ′ is a codeword4, we can compute and

decode the string T − S′ to find that codeword, and then add S ′ to retrieve S. This

reduces the problem of error correction from one with codewords of length |S|+
∣

∣S′∣
∣

to one with codewords of length |S|.
For computer files, which are naturally interpreted as a sequence of symbols in

GF (28), an obvious choice of codes is the Reed-Solomon codes [48]: Operating on

symbols from GF (2n), a Reed-Solomon code exists of length 2n − 1 with distance

δ + 1 and δ parity symbols for any 0 ≤ δ < 2n − 1. If the necessary block length is

not one less than a power of two, these codes can easily be shortened (effectively by

padding with zeroes) to provide any desired length; this construction is used quite

commonly, most notably in the error correcting codes used on CD-ROM disks.

If S can be formed from T by a sequence of Ns substitutions of total length Ls

bytes (e.g., if S = “ABCDEF” and T = “ABCXYF” then Ns and Ls can be taken

to be 1 and 2 respectively) and if M bytes are grouped into each symbol, then the

distance d(S, T ) can be bounded from above by min(Ls, 2Ns + (Ls − 2Ns)/M) by

considering the number of blocks which can be corrupted by a sequence of k consec-

utive errored symbols. Consequently, since the Reed-Solomon codes need a length-2d

parity block to correct d errors, and each symbol is M bytes in length, a Reed-

Solomon code can correct Ns substitutions of total length Ls bytes by transmitting

4Note that although S − S′ is a codeword, it is typically not the closest codeword to S.

49



min(2LsM, 2Ls + 4Ns(M − 1)) = min(2Lsdlog256 |S|e, 2Ls + 4Ns(dlog256 |S|e − 1))

bytes. Comparing this to the trivial asymptotic combinatorial lower bound (for

1 � Ns � Ls � |S|) of

Ls + log256

((|S| − Ls + 1

Ns

)

·
(

Ls − 1

Ns − 1

))

≈ Ls + Ns log256

(

Ls(|S| − Ls)e
2

N2
s

)

obtained by considering the number of ways that Ns blocks of total length Ls can be

located within a total length of |S| and using the approximations log n! ≈ n log(n) − n

and (1 + 1/n)n ≈ e, we note that this performs fairly well for Ns � Ls and for small

files, but transmits considerably more data than necessary when the changes occur

in the form of isolated bytes in a large file.

3.3 Randomized large-codeword error correction

over GF (28)

Where there are a significant number of isolated byte-substitutions, the above ap-

proach can be improved, at the expense of randomization and a small probability of

error, as follows: Rather than considering the entire string S as a codeword in a Reed-

Solomon code over GF (2k) (for strings of up to (2k − 1) bk/8c bytes) and performing

the error correction in a single step, we first apply an error-reducing code. Dividing

the string into d|S| /255e random distinct subsequences5 of length 255 (this can be

done in a variety of ways, but the simplest approach is to construct a random permu-

tation function φ — for example, by generating |S| random numbers and sorting them

— and taking the sequences φ(255i) . . . φ(255i+254)), the sending machine computes

and transmits a 2R-byte Reed-Solomon syndrome for each subsequence. Given these,

the receiving machine uses Reed-Solomon decoding over GF (28) to attempt to correct

the substitutions. For each 255-byte random subsequence, if R or fewer substitutions

were present, the resulting codeword will be correct; otherwise, at most R new errors

5Naturally, the selection of distinct subsequences would be performed in a pseudo-random man-
ner, with the initial PRNG state either fixed or transmitted as part of the error-correcting block.
The purpose of this randomization is simply to ensure that “bad” inputs, where the errors are placed
in a deliberately inconvenient manner, are not likely to be encountered.
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will have been introduced by the “decoding”6. As a result, providing that R is cho-

sen sufficiently large, the number of errors left after this randomized decoding will

be significantly reduced; a single large-field Reed-Solomon code can then correct the

remaining errors.

Suppose that strings S, T of length n differ by Ns substitutions (in any positions).

Then each random 255-byte subsequence of T will contain an average of µ = 255Ns/n

bytes which differ from the corresponding bytes in S. Suppose further that n > 216

and 2 exp(−µ(2 log(2) − 1)) < 1/2 − 1/ log256 n (for our purposes, we require that

the number of errors is at least 2–5% of the file length; if there are fewer errors, then

we take R = 0 and proceed directly to the error-correction stage, since the error-

reduction would be counterproductive). Then for some appropriate 0 < δ < 1, let R =

µ(1 + δ) and compute syndromes as above. These will allow for individual 255-byte

subsequences to be decoded with a probability of error less than the Chernoff bound of

exp(δµ)(1+δ)−R, which for δ < 1 is less than exp(−µδ2(2 log(2)−1)). Consequently,

the number of errors remaining after this first phase will be 2Ns exp(δµ)(1 + δ)−R +

O(
√

n) (where the “implicit constant” can be effectively computed given a desired

maximum probability ε of errors remaining), and (by our assumed bound above) the

second error-correcting phase can correct these while still achieving a reduction in the

number of bytes transmitted.

We note that these bounds, while algebraically complex, can be computed very

efficiently numerically; in practical scenarios, one would take the values n, Ns, and

compute for each R = 0, 1, . . . , 127 the probability of any individual 255-byte sequence

being decoded correctly, and thereby the size of the syndrome necessary in the second

phase in order to obtain the desired probability of error.

To take a simple example, suppose we wish to correct a string of length |S| = 106

bytes having Ls = Ns = 105 errors, and we are permitted a probability ε = 10−3 of

error. Using a single Reed-Solomon code, we would need to operate over GF (219)

(since we can group two bytes into each symbol), and we would need a parity block

of 2 · 105 symbols, thus we would need to transmit 475000 bytes. If we instead divide

6In fact, for large values of R, codewords with too many errors are most likely to simply be
returned as “undecodable”, since they are likely to not fall within an R-error radius of any codeword.
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S into 3922 random subsequences of length 255 (padding the final subsequence with

zero bytes), and take R = 37 (i.e., send a syndrome of 74 bytes for each 255-byte

subsequence), then each individual subsequence can be correctly decoded with prob-

ability 99.14%, and the number of remaining errors is less than 4359 with probability

1− ε. Now we can send a much smaller parity block over GF (219), and correct these

remaining errors using 20701 bytes, for a total of 310929 bytes transmitted, less than

the original requirement of 475000 (at the expense of potentially getting the wrong

answer if the error-reducing stage left too many errors remaining).

3.4 Rsync revisited

The rsync algorithm, patented in 1995 [46, 47] and independently invented and popu-

larized7 by Andrew Tridgell [36, 57] is a two-round protocol for file synchronization8.

For a parameter B, known as the block size and typically in the range of 300–700

bytes, the receiving machine computes and transmits checksums of bytes iB up to

(i + 1)B − 1 of T for all 0 ≤ i < |T | /B. The sending machine, upon receiving

these checksums, computes the checksums of bytes i up to i + B − 1 of S for all

0 ≤ i < |S| and searches for collisions between the two lists. The sending machine

then encodes S as a sequence of raw bytes and blocks from T and transmits this,

allowing the receiving machine to reconstruct S9. The key observation which makes

this algorithm practical is that a “rolling” checksum can be used, allowing the check-

sums of |S| blocks of length B to be computed in O(|S|) time, combined with a

stronger checksum10 which is only computed if the rolling checksum matches. This

makes it difficult to construct files which “break” rsync, although it is still easy to

7The name of the algorithm comes from the free implementation written by Andrew Tridgell.
8In his PhD thesis [57], Andrew Tridgell refers to the patent [46] and describes it as “a somewhat

similar algorithm”; however, I have been unable to discern how rsync differs from the algorithm
described in that patent. Having no legal expertise, I naturally cannot comment on the validity of
the patent, the claims it makes, et cetera.

9In essence, the receiving machine sends an index to the sending machine, which then uses this
in constructing a binary patch; however, due to the large block size (typically 300–700 bytes), the
resulting patches are much larger than those constructed by other methods.

10Here an unfortunate implementation decision was made in rsync: The “strong checksum” chosen
is the MD4 [49] algorithm, which is now considered to be entirely broken [14, 58]. Although the
author maintains that the cryptographic security is irrelevant [57], we believe this assessment is
rather optimistic, since the existence of files which rsync is unable to synchronize breaks one of the
widely-held assumptions about the tool.
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construct files which force rsync to take O(B |S|) computational time. While such

files are unlikely to occur in practice, they pose a security risk, since anyone who can

convince an rsync server to distribute such a file can thereafter execute a very easy

denial-of-service attack against the server, simply by using rsync to fetch that file11.

To see the relevance of rsync to our problem, we first convert it into a three-round

protocol known as “reverse rsync”, which was patented [22, 23] and independently

reinvented a couple of years later [8]. Under this protocol, the sending machine first

splits S into blocks of length B and computes hashes for each of them (these can be

precomputed and stored for later use); these hashes are transmitted, and the receiv-

ing machine now computes and compares |T | checksums against this list. Any blocks

for which the receiving machine can identify matching blocks from T are copied; a

list of the remaining (missing) blocks is sent back. Finally, the sending machine,

having received this list of blocks, sends the appropriate bytes. While this has the

disadvantage of requiring three rounds rather than two, it has several significant ad-

vantages: First, some checksums can be precomputed and stored on disk; second, the

most cpu-intensive part of the protocol — comparing the checksums received to the

local file — is moved to the client, dramatically increasing the number of connections

which can be handled by a single server; and third, the final part of the protocol —

sending the requested blocks of S — is in fact a subset of the HTTP/1.1 protocol [16],

which provides for a “Content-Range” header allowing individual parts of a file to

be requested. Consequently, the “reverse rsync” protocol can be implemented at the

sending side by generating a file containing the block checksums, and thereafter using

any of the many well-tested, efficient, and secure HTTP servers available.

This three-round protocol can be converted into an algorithm for universal delta

compression as follows: The checksums are sent as before, but rather than waiting

for the receiving machine to provide a list of missing blocks, the sending machine also

computes and sends the parity block for S for some convenient cyclic error correcting

code. Upon receiving these two components, the receiving machine decodes as follows:

Using the checksums as before, it finds blocks in T and places them in the appropriate

11It is always possible to execute a denial-of-service attack through imposing heavy load on a server
by making a large number of requests; such attempts are limited, however, by the attackers’ available
bandwidth. This attack is far more serious because it does not require significant bandwidth.
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positions; once these are in place, the parity block is appended, the missing blocks are

labeled as “erasures”, and the error correcting code is decoded, filling in all the gaps

between the matched blocks. Since the block size B is much larger than log |S|, this

error correcting can be done with a shortened Reed-Solomon code over GF (256B) in

a number of bytes equal to the number of bytes not matched from T . For reasons

of efficiency, each B-byte block would best be split into smaller blocks — decoding

a length |S| /B Reed-Solomon codeword over GF (256B) is far slower than decoding

B/k independent length |S| /B Reed-Solomon codewords over GF (256k) — but this

does not affect the size of deltas produced12.

For typical files, there is however a difference between the bandwidth used by

this one-way rsync and the traditional algorithm: When transmitting the unmatched

blocks, rsync normally applies deflate compression, which often reduces the bandwidth

used by 50–60%, while the error correcting parity block (or syndrome) will in almost

all cases not be compressible in such a manner. This effect could be somewhat

mitigated by splitting S not into blocks of constant length B, but rather into blocks

which can be individually deflated to the same size. The error correcting code would

then be applied to these deflated blocks, and S would be reconstructed by re-inflating.

While an interesting possibility, this would probably be too complex to be of practical

value.

Suppose that S can be formed from T by a sequence of Ns substitutions of to-

tal length Ls, Ni insertions of total length Li, and Nd deletions (of any length).

Then out of the |S| /B length-B blocks in S, at most min(Ls, 2Ns + (Ls − 2Ns)/B)

are not in T as a result of substitutions; at most min(Li, 2Ni + (Li − 2Ni)/B) are

unmatchable due to insertions; and at most Nd are unmatchable due to deletions.

For Ns, Ni, Nd � |S|, the expected number of mismatching blocks is approximately

Ns + Ni + Nd + (Ls + Li)/B. Consequently, the transmitted parity block should

be of length at least (Ns + Ni + Nd)B + Ls + Li bytes in order to accommodate a

typical placement of insertions and substitutions, and if worst-case placement of the

12Theoretically, operations in GF (2k) can be performed in O(k1+ε) time using the FFT; but for
k less than several hundred the best implementations are either O(1) after computation of a lookup
table of size 2k (for k up to around 20) or O(k2) time (for k from around 20 up to several hundred).
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insertions and substitutions is to be accommodated, the parity block should be of

length at least (2Ns + 2Ni + Nd)B + Ls + Li bytes.

The checksum block needs to contain checksums for |S| /B blocks. In order to

avoid excessive computation, the rolling checksum should be of length at least log2 |T |
bits; this will keep the computation of the strong checksum to a reasonable time limit

for random files. The strong checksum should contain an additional log2(|S| /(Bε))

bits, where ε is the accepted probability of failure (due to accidental hash collision);

together, these two hashes consume log2(|S| |T | /(Bε)) bits, for a total of

|S|
B

log256

( |T | |S|
Bε

)

bytes in the checksum block. We note that the danger of malicious inputs causing

an increase in the required computational time can be reduced somewhat by using a

keyed checksum function (and including the key in the patch file); more significantly,

however, the computational burden is entirely at the receiving side, so there is no

potential for denial of service.

Making the substitution N = Ns + Ni + Nd for the benefit of clarity, if we take

B =

√

√

√

√

|S|
N

log256

(

|T |
√

|S|N
ε

)

then we can construct a patch of size

Ls + Li +

√

√

√

√2 |S|N log256

(

|T |2 |S|N
ε2

)

which will apply to most files T which differ from S by at most Ns substitutions of

total length Ls, Ni insertions of total length Li, and Nd deletions. With a patch of

size

Ls + Li + 2

√

√

√

√|S|N log256

(

|T |2 |S|N
ε2

)

bytes and a random checksum function, any T (even those with inconveniently placed

edits) within that radius can be “patched” with probability at least 1−ε; the extra fac-

tor of
√

2 arises from the possibility that the insertions and substitutions are located

in such a manner as to maximize the number of blocks modified. For random inputs,
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or if a random keyed hash is used, this operates in O(|S|1+ε) time if fast algorithms

are used, or O((|S|N +(Ls +Li)
√

|S|N)1+ε) time if classical algorithms are used; in

both cases, the implicit constants are much larger on the receiving side than on the

sending side, since for the Reed-Solomon codes (which dominate the running time)

decoding is significantly more expensive than encoding. Practical implementations

may find a different (and faster) choice of error correcting code more suitable.

It is interesting to contrast this against the previous section; while error correcting

codes, by themselves, are quite efficient at correcting substitutions but are entirely

unable to correct insertions or deletions, this “one-way rsync” approach is able to

correct insertions, deletions, and substitutions equally well. For many files (e.g., text,

source code, archives) this is sufficient; but some files types, such as executable code,

tend to have far more substitutions than indels, and for such files neither of these two

approaches will produce very good results.

3.5 Block alignment

To fill this gap — that is, to construct universal patches for files which contain

some indels, but differ most often by substitutions — we turn once more to the

randomized algorithm for matching with mismatches presented in Chapter 1. In

addition to the asymptotically superior computational running time of the algorithm,

this algorithm has another very important advantage: It operates using an index of

size only O(n log(n)/m) floating-point values.

In order to take advantage of this, we proceed as follows: Taking B as fixed

for the moment, we compute L = 4 |S| log |S|/B. Following the approach taken in

Chapter 1, we select random primes p1, p2 in the interval [L,L(1 + 2/ log L)), and

random mappings φ1, φ2 : GF (256) → {−1, 1}. In “real-world” usage, the strings

S, T are most likely non-random; consequently we “mask” characters which occur

more often than others: We count the number of times nx that each byte value x

appears in S, and form φ′i(x) = φi(x)/
√

nx. We now apply these two mappings and

projections and compute A(1) ∈ R
Zp1 , A(2) ∈ R

Zp2 with A
(i)
j =

∑

k φ′i(Sj + kpi).

Since each A
(i)
j is the sum of only |S| /pi + O(1) terms, each coming from a single
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character, we don’t need to transmit these with arbitrary precision13; instead, we find

the minimum and maximum values, and scale and round all the A
(i)
j to integers in

the range [0, 2b), where b = dlog2(|S| /L)/2e14. The sending machine now transmits

S̄ = (p1, p2, φ1, φ2, A
(1), A(2)) using

|S| log |S| log2(
B

4 log|S|)(1 + o(1))

2B

bytes. Note that, for any given block size B, this index is larger than the checksum

block needed by rsync by a factor of

4 log |S| log( B
4 log|S|)

log(
|T ||S|

B )

— typically around a factor of ten — but has the advantage of being able to match

blocks containing substitutions.

Upon receipt of this index, the receiving machine performs length-pi forward FFTs

on the A(i)15, splits T into blocks of length B bytes, and for each block computes the

vectors B(i), their Fourier transforms, and thereby the vectors C(i). Using priority

queues, the values 0 ≤ j < n are computed for which C
(1)
j +C

(2)
j is maximized for each

block, indicating that each particular length B block of T probably approximately

matches S starting at offset j. Furthermore, the sums C
(1)
j + C

(2)
j for each block

indicate roughly how well the blocks match — not perfectly, but accurately enough

to distinguish between a block from T which approximately matches in S and a block

from T which does not exist anywhere in S (and therefore obtains an essentially

random value j).

After computing where each length B block from T best matches against S, we

sort these matchings according to their positions in S16. Where two blocks overlap,

we compare the values C
(1)
j + C

(2)
j which were computed for the two overlapping

blocks; the block with the higher score is retained intact, while the other block is

13Recall that, due to the masking used, these values are no longer integers.
14This range ensures that the rounding errors are of the same magnitude as the contribution from

a single character in S, i.e., negligible.
15This pre-computation is naturally faster than recomputing the forward FFT each time we wish

to compute the convolution of A(i) with B(i).
16This allows us to take advantage of blocks which have been re-ordered; if we are concerned solely

with edit distance (which does not permit re-orderings) then this step may be omitted.
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shortened (to start or end where the higher scoring matching finishes) or entirely

removed (in the case of low-scoring blocks which are completely covered by other

blocks). As a result of the parameters chosen (k = 2, L = 4 |S| log |S|/B), any of

the length-B blocks from |T | which do not contain any indels (with respect to S)

and contain at most B/2 substitutions will be found. As such, placing these blocks

in their respective positions will construct a string which differs from S by at most

Nd + Ni + Ns substitutions of total length (Nd + Ni)B + Li + 2Ls, since at most

Nd + Ni blocks are lost due to indels.

The sending machine now transmits a Reed-Solomon parity block containing

2((Nd + Ni)B + Li + Ls)/M + 2Ns symbols (i.e., capable of correcting half that

number of errors) over GF (256M ), where M = dlog256 |S|e; this requires

2(Nd + Ni)B + 2Li + 2Ls + 2 dlog256 |S|eNs

bytes. The receiving machine then uses this to correct the errors in the string it had

previously constructed: The substitutions (of total length Ls) are, in the worst case,

isolated and thus corrupt one symbol each, while the regions lost due to insertions

(of total length Li) and indels (which damage at most (Nd +Ni)B bytes) are in large

blocks and therefore corrupt entire symbols at once17.

Taking B =
√

|S| log 256/N log |S|, we can therefore construct a patch of size

(

2Ls + 2Li + 2 log256 |S|(Ns + 2
√

|S| (Nd + Ni) log 256)
)

(1 + o(1))

bytes which can be applied with probability approaching 1 to any string T which

differs from S by a sequence of at most Ns substitutions of total length Ls, Ni

deletions of total length Li, and Nd insertions.

3.6 Practical improvements

While the above is quite satisfying theoretically — it reduces the “cost” of a byte-

substitution from O((|S| /N)1/2+ε) (where N denotes the total number of indels and

substitutions) to O(log |S|) — we can make significant practical improvements.

17Note that the cost of reconstructing missing data (e.g., insertions) has doubled compared to
rsync: In this case, we have not identified such regions as erasures.
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First, rather than taking L = 4 |S| log |S|/B, we take L = 16 |S| log |S|/B. This

allows us to correctly align not only blocks which are indel-free and contain up to

50% mismatches, but also to align part of most blocks containing a single indel and

up to 50% mismatches18: Considering the indel as dividing the block into two parts,

at least one of the parts will be large enough (i.e., provide enough “signal”) to be

found with high probability. Conversely, any indel-free region of length at least B is

likely to have at least one sub-region correctly aligned — that is, providing that no

two indels are located within B bytes of each other, we will have an alignment which

is correct apart from the positions of the boundaries between aligned regions, which

may be incorrectly placed by up to B/2 bytes in either direction.

To improve this alignment, we take each such boundary in turn, and adjust it

in order to maximize the number of matching characters19. While the receiving

machine does not have a copy of S and therefore cannot perform this adjustment

perfectly, it has A(1) and A(2), and can act to maximize the dot product of these

with the result of mapping φi onto the potentially matching characters. Since each

A
(i)
j is the sum of contributions from at most |S| /L + O(1) = B/(16 log S̄) + O(1)

characters, this corrects the boundaries from being incorrect by an average of B/4

bytes to being incorrect by an average of B/(8
√

2π log S̄) bytes, which is roughly a

50-fold improvement for the sizes of strings which concern us.

We20 now have an alignment between S and T which covers S and at least approx-

imately reflects the “correct” alignment between the two strings: Inter-indel regions

of length less than B may be missing, and the boundaries between such regions (i.e.,

the positions of indels) will be not be placed in exactly the correct positions, but

the alignment is at least fairly close. We now make one final improvement: Noting

that in some areas this alignment will be entirely incorrect (either because the correct

alignment has too many indels, or due to insertions), we take each block in turn and

shorten it in an attempt to replace probable errors with erasures. This is performed

18For that matter, an indel-free block containing 75% mismatches is likely to be correctly aligned,
but this isn’t useful to us, since the cost of correcting those errors would exceed the cost of recon-
structing an erased block.

19cf. section 2.4.
20I excuse the (grammatically questionable) use of the first person plural on the basis that I write

on behalf of both myself and the computer which is carrying out the algorithm described.
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by considering again the dot product of the vectors A(i) with the result of mapping

φi onto the potentially matching characters, but this time we estimate the contribu-

tion which would be obtained from each character if the matching were correct. This

cannot be done with any degree of precision, as a result of the weighting applied to

each character in constructing the A(i), but it nevertheless is somewhat useful when

there are large regions of S which do not correspond to any part of T .

After the adjustment has been performed to the alignment, the errors and erasures

are corrected; rather than using a single Reed-Solomon code for this purpose, we refer

back to section 3.3 and use a two-phase randomized code, where the number of parity

bytes is calculated based on the desired maximum probability of error ε and the radius

R within which we expect the string T to lie (or, equivalently, the number of errored

and erased bytes we expect to find at this point).

Finally, we note that for practical purposes, the optimal value of B given above

(even if it could be computed in advance) is likely unsuitable: while the method

described here operates in almost-linear time at the sender (and is dominated by the

cost of Reed-Solomon encoding), it takes O((|S| |T | /B2)1+ε) = O((|T | (Ni+Nd))
1+ε)

time at the receiving side. As in Chapter 2, we instead take a fixed B = 2
√

|S| log |S|,
unless we know that the two files are extremely closely related21, in which case a larger

value may be preferred.

3.7 Performance

To demonstrate the performance of the methods described here, we refer back to the

two corpora used in Chapter 2, the first consisting of 15 “upgrades” and the second

of 82 “security patches”. For each of these pairs of files, we compute:

1. The total number of bytes transmitted (in either direction) by rsync -z, i.e.,

the normal two-phase rsync algorithm using deflate compression on the un-

matched blocks.

21i.e., unless we have reason to believe that Ni + Nd < log 4 log |S|.
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one-way Block matching
Program Original bzip2 bsdiff 6 rsync -z rsync index erasures errors R1 R2 Total
agrep: 4.0 → 4.1 262144 114388 4265 45721 82752 11848 2823 5020 23 1615 39149
glimpse: 4.0 → 4.1 524288 222548 24642 220324 447340 18299 20769 38380 69 4818 171675
glimpseindex: 4.0 → 4.1 442368 193883 16240 193090 385975 16458 19760 28319 65 3753 137678
wgconvert: 4.0 → 4.1 368640 157536 12432 153151 313492 13725 9775 19873 53 2992 97095
agrep: 3.6 → 4.0 262144 114502 44327 120856 244152 11953 145889 22201 214 3149 239245
glimpse: 3.6 → 4.0 524288 222178 109680 236643 492940 16011 371685 38708 244 4036 527505
glimpseindex: 3.6 → 4.0 442368 193892 80447 205472 412375 15452 268397 47393 238 4533 438582
netscape: 3.01 → 3.04 6250496 2396661 212032 1996455 4349706 86789 817578 439258 93 37019 2368208
gimp: 0.99.19 → 1.00.00 1646592 642725 219684 634918 1390304 31875 964476 122590 214 11781 1443340
iconx: 9.1 → 9.3 548864 233056 31632 240298 503250 18087 106942 36012 108 5358 253337
gcc: 2.8.0 → 2.8.1 2899968 708301 88022 826093 2644877 42320 392902 170194 87 18653 1080736
rcc (lcc): 4.0 → 4.1 811008 221826 187 18482 24058 20850 0 80 0 231 21399
apache: 1.3.0 → 1.3.1 679936 180708 25927 180729 581319 19677 159302 53692 127 6385 373551
apache: 1.2.4 → 1.3.0 671744 179369 163249 212517 662780 19636 555078 93948 255 0 691561
rcc (lcc): 3.2 → 3.6 434176 155090 22691 152800 362140 17628 103265 31103 124 4319 238518
Average Compression 100% 36.22% 7.67% 33.54% 78.03% 52.51%

Table 3.1: Bandwidth used by bzip2, (two-way) rsync, one-way rsync, and our block matching universal delta compressor for
“upgrade” patches.
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2. The minimum size of patch needed by the “one-way rsync” algorithm described

in Section 3.4 in order to correctly apply the update with probability of failure

ε < 0.00122.

3. The size of index, the number of errors and erasures, the number of parity

bytes needed per 255-byte subsequence (R1) in the error-reduction phase, and

the number of parity characters needed in the error-correction phase (R2), and

finally the minimum necessary total patch size needed by our block matching

delta compressor with the improvements listed in Section 3.6 (again, subject to

an acceptable probability of failure of 0.001).

In the case of rsync and one-way rsync, the block size was fixed at 300 bytes;

for our block matching delta compressor, where a constant block size would lead to

quadratic running-time, the block size was 2
√

|S| log |S|.
Note that for the two universal delta compressors, the patch sizes computed are

minimum sizes — patches which included more parity data would apply with a lower

probability of error. The exact sizes of patches used will necessarily depend upon

the method in which this is being used: If one has all of the potential files T readily

available, and the purpose of using universal delta compression is simply to allow for

a single file to be broadcast instead of a large number of different patches, then the

computed minimum patch sizes would likely be used; if, on the other hand, one has

no knowledge of the files T , one would probably send a sequence of patches computed

using increasing amounts of parity data. We expect that, in practice, most uses would

fall between these two extremes — that the files T would be unknown to the sending

machine, but that it could generate a number of “typical” files T , and use these to

estimate the amount of parity data needed.

As in Chapter 2, we compute the average compression as the the average value of

[patch size]/[original size].

In Table 3.1, we show the results for the 15-element “upgrade” corpus. Two points

are immediately evident: First, as we expect from the structure of executable files,

22A probability of failure is inevitable in any practical universal delta compression algorithm; but
by sending a strong hash (e.g., SHA1 [38]) along with the patch, failures can normally be recognized
and resolved by other mechanisms.
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even with a block size of 300 bytes there are very few matching blocks for rsync to

utilize. As shown by the size of “one-way rsync” patches, only about 25% of the

blocks can be matched; the remaining 75% are encoded literally. These few matching

blocks allow rsync -z to narrowly beat bzip2 overall, but the vast majority of the

compression it achieves arises from the deflation of the literal data. Second, while our

block matching universal delta compressor performs quite poorly overall (and in two

cases fails to achieve any compression at all), it performs relatively well in cases where

the differences are modest: On the first four pairs of files, it generates smaller patches

than rsync, and in a few other cases it is fairly close to rsync in performance. Here

again we note that rsync has the advantage of being able to deflate literal data — were

it not for that ability, our block matching delta compressor would produce smaller

patches in almost all cases. Consequently, the best approach for “universal” delta

compression in the case of such significant differences is a depressing solution: Apply

normal bzip2 compression, and ignore the old files entirely. Finally, as expected,

neither rsync nor either of the universal delta compressors achieve performance even

remotely approaching that of bsdiff 6.

In Table 3.2, we show the results for the 82-element “security patch” corpus,

and the situation is quite changed. Both rsync and one-way rsync perform signifi-

cantly better, matching roughly 50% of blocks. While one-way rsync still performs

on average worse than bzip2, it produces smaller patches on three file types — li-

brary archives, C header files, and (textual) configuration files — which all share the

property of not being affected by the “cascade of differences” introduced by linking

together executable code23. Of greater note is the performance of our block matching

universal delta compressor: On all the file types, it performs roughly 3 times better

than bzip2, and with the exception of the text files (where rsync has an advantage

as a result of using a much smaller index) it uses considerably less bandwidth than

rsync, despite lacking the advantages of feedback and deflation of literal data. Again,

however, none of the universal delta compressors approach the performance of bsdiff

23Address changes are still spread throughout any individual modified object file, but not into
other object files contained in the same library archive.
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File type # files Total size bzip2 bsdiff 6 rsync -z one-way rsync block matching
Executables (static) 53 15056508 6725178 250509 5356778 10106284 2273899
Executables (dynamic) 16 8002788 3399743 128859 2549330 4999430 1100731
Library archives 7 7600906 1635094 16476 502267 1288456 489293
Shared Object 3 1438072 599937 13338 396485 752056 180050
C headers 1 11402 3810 126 706 1042 1581
Configuration 2 10183 4407 214 989 1619 1421
Total 82 32119859 12368169 409522 8806555 17348887 4046975
Average Compression 100% 38.51% 1.27% 27.42% 54.01% 12.60%

Table 3.2: Bandwidth used by bzip2, (two-way) rsync, one-way rsync, and our block matching universal delta compressor for
“security” patches.
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6; in fact (referring back to Table 2.2), even such a poor delta compressor as Xdelta

produces smaller patches.

While the compression performance makes this approach at very least interest-

ing, it is not yet clear whether the computational performance will be adequate for

widespread usage. Although the computation necessary for aligning the two files is not

excessive, it is vastly more expensive than that involved in rsync or the application

of normal deltas; furthermore, while the error-reducing step (requiring only Reed-

Solomon decoding of 255-byte codewords) is quite fast24, the final error-correcting

stage is likely to be too slow unless it is replaced by a different error-correcting code.

In the end, the practicality of this algorithm will most likely be determined more

by future advances in processors and networks than by its own merits. If the present

trend where networks are increasing in speed faster than processors continues, it is

possible that the entire field of delta compression will become obsolete, as it becomes

increasingly simple to retransmit entire files; if, on the other hand, computing capacity

starts to increase at a greater rate25, then this algorithm, regardless of its current

computational requirements, may become entirely practical.

24Commercially available libraries cite performance of several megabytes per second on commodity
processors.

25While recent developments seem to indicate a slowing down of advances in processor speed, the
trend towards increased internal parallelism may, at least for some problems, reverse this trend.
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Appendix A: Source code and data

The “upgrade” and “security” corpora used in Chapter 2 and Chapter 3 were obtained

from the paper by Baker, Manber and Muth [6], via Robert Muth, and from FreeBSD

Update [44] respectively, and may be obtained from the author1.

An earlier version of the software described in Chapter 2, namely bsdiff 4.2, has

been published under an open source license and is available (at least at the time of

publication) from the following web site:

http://www.daemonology.net/bsdiff/

Under the statutes of Oxford University [42], the remaining software may be

claimed by the University if it ‘may reasonably be considered to possess commercial

potential’. At present, it is not yet clear if the University will so elect. If the University

does not claim ownership of the remaining software, it will also be released under

an open source license after it has been “cleaned up” somewhat and prepared for

widespread usage.

1We note that the binaries were originally distributed under a variety of licenses; but we believe
that their inclusion in delta compression corpora, and their use for the purpose of evaluating the
effectiveness of delta compression algorithms, falls well within the legal definitions of “fair dealing”
or “fair use”, thus exempting them from normal copyright restrictions.
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Epilogue: A Rapid String

Similarity Metric

In Chapter 1 we introduced the approach of projecting vectors onto subspaces of

relatively prime dimensions and used it to construct an algorithm for matching with

mismatches. Lest the reader be left with the impression that this approach is useful

solely for this single problem, we present one final “late-breaking” algorithm.

Recall from Chapter 1 that the match count vector V ∈ R
n is defined by

Vi =
m−1
∑

j=0

δ(Si+j , Tj)

for some appropriate function δ(x, y). Consider how this vector behaves when the

two strings S, T differ by a small number of indels (and up to a constant proportion

of substitutions). The vector V will have a few very large values, at positions corre-

sponding to the offsets of the indel-free blocks which match between the two strings,

and will otherwise have values which cluster around µm, where µ is the mean value

of δ when applied to random inputs.

Now consider the variance σ2V =
∑

V 2
i /(m − 1) − (

∑

Vi)
2/(m(m − 1)). For

pairs of strings which are similar (or rather, which share large indel-free regions), the

positions in V which have unusually large values will translate directly into a large

variance, whereas for strings which are dissimilar, the variance will be comparatively

small.

Now project V onto a subspace R
Zp . The “noise threshold” is increased, but again

for sufficiently large p, similar strings will result in a larger variance σ2(Rn → R
Zp)V

than dissimilar strings.

But wait! The vector V can be estimated as the cyclic correlation of two vectors

A = φ(S) and B = φ(T ). The cyclic correlation is computed as the inverse Fourier

67



transform of the pointwise product of the Fourier transformed inputs1. And the

variance of an inverse Fourier transform is the sum of the squared norms of the non-

DC components2.

We thus have the following:

Algorithm. Let some φ : Σ → {−1, 1}, p ∈ N be fixed. Then given a string S, we

compute:

1. For j = 0 . . . p − 1,

Aj =
∑

k

φ(Sj+kp)

2. For j = 0 . . . p − 1,

Āj =
∑

k

Aj exp(2ijkπ/p)

3. For j = 1 . . . (p − 1)/2,

S̄j =
∣

∣Āj

∣

∣

2
/

√

√

√

√

√

(p−1)/2
∑

j=1

∣

∣Āj

∣

∣

4

Then the dot product S̄ · T̄ of the “digests” of two random strings S, T will be approx-

imately equal to 1/2, the dot product S̄ · S̄ of the digest of a string with itself is equal

to 1, and other pairs of strings will lie in between, in accordance with their similarity.

Proof. It suffices to take the first half of the Fourier transform (i.e., the terms

Ā1 . . . Ā(p−1)/2, since for real inputs (such as we have) the remaining terms are simply

the conjugates with the same (Euclidean) norms.

That random strings result in a dot product of 1/2 follows from consideration

of the Ā as being random vectors of fixed norm; the remaining result follows from

the argument above concerning the influence of large indel-free regions on the match

count vector V .

1Subject to the second string being reversed, naturally.
2Recall that the Fourier transform is a rotation in R

n, i.e., it preserves 2-norm length.

68



Bibliography

[1] K.A.S. Abdel-Ghaffar and A. El Abbadi. An optimal strategy for comparing file

copies. IEEE Transactions on Parallel and Distributed Systems, 5:87–93, 1994.

[2] M. Adler and J. Gailly. zlib compression library, 2003. http://www.zlib.org.

[3] M.J. Atallah, F. Chyzak, and P. Dumas. A randomized algorithm for approxi-

mate string matching. Algorithmica, 29(3):468–486, 2001.

[4] K. Baba, A. Shinohara, M. Takeda, S. Inenaga, and S. Arikawa. A note on

randomized algorithm for string matching with mismatches. In Proceedings of

the Prague Stringology Conference ’02 (PSC’02), pages 9–17, 2002.

[5] R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximate string

matching. In Proceedings of the 3rd Annual Symposium on Combinatorial Pat-

tern Matching (CPM ’92), LNCS 644, pages 185–192. Springer-Verlag, 1992.

[6] W.S. Baker, U. Manber, and R. Muth. Compressing differences of executable

code. In ACM SIGPLAN Workshop on Compiler Support for System Software

(WCSS), pages 1–10, 1999.

[7] L.I. Bluestein. A linear filtering approach to the computation of the discrete

Fourier transform. IEEE Transactions on Audio and Electroacoustics, AU-

18(4):451–455, 1970.

[8] G. Brederlow. reverse checksumming. rsync@lists.samba.org mailing list, April

2001.

69



[9] R.P. Brent, J. van de Lune, H.J.J. te Riele, and D.T. Winter. On the zeros of

the Riemann zeta function in the critical strip. II. Mathematics of Computation,

39(160):681–688, 1982.

[10] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algo-

rithm. SRC Research Report 124, Digital Equipment Corporation, Palo Alto,

California, 1994.

[11] W. Chang and T. Marr. Approximate string matching and local similarity. In

Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching

(CPM ’94), LNCS 807, pages 259–273. Springer-Verlag, 1994.

[12] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[13] J.W. Cooley and O.W. Tukey. An algorithm for the machine calculation of

complex Fourier series. Mathematics of Computation, 19:297–301, 1965.

[14] H. Dobbertin. Alf swindles Ann. RSA Laboratories Crypto Bytes, 1(3), 1995.

[15] P. Dusart. The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2. Mathe-

matics of Computation, 68(225):411–415, 1999.

[16] R. Fielding, J. Gettys, J. Mobul, H. Nielsen, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol — HTTP/1.1. RFC 2616, 1999.

[17] M.J. Fischer and M.S. Paterson. String matching and other products. In R. Karp,

editor, Complexity of Computation — SIAM-AMS Proceedings, volume 7, pages

113–125, 1974.

[18] FreeBSD Project. The FreeBSD operating system. http://www.freebsd.org/.

[19] FreeBSD Project. FreeBSD CVS repository, 2004.

http://www.freebsd.org/cgi/cvsweb.cgi/.

[20] FreeBSD Project. FreeBSD security information, 2004.

http://www.freebsd.org/security/.

70



[21] P. Graham. A plan for spam, 2002. http://www.paulgraham.com/spam.html.

[22] C.J. Heath and P. Hughes. Data file synchronization. Australian Patent 763524,

1999.

[23] C.J. Heath and P. Hughes. Data file synchronization. United States Patent

6,636,872, 2000.

[24] W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

[25] J.T. Hunt, K.-P. Vo, and W.F. Tichy. Delta algorithms: an empirical analy-

sis. ACM Transactions on Software Engineering and Methodology, 7(2):192–214,

1998.
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